Normalized defining polynomial
\( x^{20} + 8 x^{18} + 29 x^{16} + 97 x^{14} + 296 x^{12} + 350 x^{10} - 1255 x^{8} - 3750 x^{6} + \cdots + 125 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[4, 8]$ |
| |
| Discriminant: |
\(267741240538215680000000000000\)
\(\medspace = 2^{20}\cdot 5^{13}\cdot 3803^{4}\)
|
| |
| Root discriminant: | \(29.61\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(5\), \(3803\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5}a^{8}-\frac{1}{5}a^{6}-\frac{1}{5}a^{4}$, $\frac{1}{5}a^{9}-\frac{1}{5}a^{7}-\frac{1}{5}a^{5}$, $\frac{1}{5}a^{10}-\frac{2}{5}a^{6}-\frac{1}{5}a^{4}$, $\frac{1}{5}a^{11}-\frac{2}{5}a^{7}-\frac{1}{5}a^{5}$, $\frac{1}{5}a^{12}+\frac{2}{5}a^{6}-\frac{2}{5}a^{4}$, $\frac{1}{5}a^{13}+\frac{2}{5}a^{7}-\frac{2}{5}a^{5}$, $\frac{1}{35}a^{14}+\frac{2}{35}a^{12}+\frac{3}{35}a^{8}+\frac{11}{35}a^{6}-\frac{1}{7}a^{4}-\frac{2}{7}a^{2}+\frac{1}{7}$, $\frac{1}{35}a^{15}+\frac{2}{35}a^{13}+\frac{3}{35}a^{9}+\frac{11}{35}a^{7}-\frac{1}{7}a^{5}-\frac{2}{7}a^{3}+\frac{1}{7}a$, $\frac{1}{175}a^{16}-\frac{2}{175}a^{14}-\frac{1}{175}a^{12}+\frac{17}{175}a^{10}+\frac{6}{175}a^{8}-\frac{1}{5}a^{6}+\frac{16}{35}a^{4}-\frac{1}{7}a^{2}+\frac{2}{7}$, $\frac{1}{175}a^{17}-\frac{2}{175}a^{15}-\frac{1}{175}a^{13}+\frac{17}{175}a^{11}+\frac{6}{175}a^{9}-\frac{1}{5}a^{7}+\frac{16}{35}a^{5}-\frac{1}{7}a^{3}+\frac{2}{7}a$, $\frac{1}{11790626575}a^{18}-\frac{5614242}{11790626575}a^{16}+\frac{44563104}{11790626575}a^{14}-\frac{743211663}{11790626575}a^{12}-\frac{125362}{1684375225}a^{10}-\frac{314687}{36278851}a^{8}+\frac{1021243557}{2358125315}a^{6}+\frac{55949826}{471625063}a^{4}+\frac{130089273}{471625063}a^{2}+\frac{87995896}{471625063}$, $\frac{1}{11790626575}a^{19}-\frac{5614242}{11790626575}a^{17}+\frac{44563104}{11790626575}a^{15}-\frac{743211663}{11790626575}a^{13}-\frac{125362}{1684375225}a^{11}-\frac{314687}{36278851}a^{9}+\frac{1021243557}{2358125315}a^{7}+\frac{55949826}{471625063}a^{5}+\frac{130089273}{471625063}a^{3}+\frac{87995896}{471625063}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{48808973}{11790626575}a^{18}+\frac{363911082}{11790626575}a^{16}+\frac{1211758761}{11790626575}a^{14}+\frac{4049541033}{11790626575}a^{12}+\frac{12167535509}{11790626575}a^{10}+\frac{112277143}{129567325}a^{8}-\frac{1920201089}{336875045}a^{6}-\frac{4172429554}{336875045}a^{4}-\frac{324925347}{67375009}a^{2}+\frac{790997290}{471625063}$, $\frac{193637331}{11790626575}a^{18}+\frac{191589461}{1684375225}a^{16}+\frac{4210332481}{11790626575}a^{14}+\frac{14479052748}{11790626575}a^{12}+\frac{42380832384}{11790626575}a^{10}+\frac{1881330463}{906971275}a^{8}-\frac{52692653666}{2358125315}a^{6}-\frac{17763782789}{471625063}a^{4}-\frac{805691650}{67375009}a^{2}+\frac{822273560}{471625063}$, $\frac{85576}{9593675}a^{18}+\frac{566193}{9593675}a^{16}+\frac{242327}{1370525}a^{14}+\frac{5956207}{9593675}a^{12}+\frac{17143566}{9593675}a^{10}+\frac{97872}{147595}a^{8}-\frac{3297881}{274105}a^{6}-\frac{6303665}{383747}a^{4}-\frac{1127522}{383747}a^{2}-\frac{317216}{383747}$, $\frac{8713638}{2358125315}a^{18}+\frac{49977441}{2358125315}a^{16}+\frac{3497631}{67375009}a^{14}+\frac{13105541}{67375009}a^{12}+\frac{1223662898}{2358125315}a^{10}-\frac{63692781}{181394255}a^{8}-\frac{2429295653}{471625063}a^{6}-\frac{5592304269}{2358125315}a^{4}+\frac{2326548685}{471625063}a^{2}+\frac{307148715}{471625063}$, $\frac{33886503}{1684375225}a^{18}+\frac{1591013432}{11790626575}a^{16}+\frac{4822417906}{11790626575}a^{14}+\frac{16772522423}{11790626575}a^{12}+\frac{48499146874}{11790626575}a^{10}+\frac{1562866558}{906971275}a^{8}-\frac{9262733133}{336875045}a^{6}-\frac{94411218214}{2358125315}a^{4}-\frac{3313292865}{471625063}a^{2}+\frac{657797212}{471625063}$, $\frac{5909246}{1684375225}a^{18}+\frac{259700962}{11790626575}a^{16}+\frac{721932506}{11790626575}a^{14}+\frac{2569359503}{11790626575}a^{12}+\frac{7286394264}{11790626575}a^{10}+\frac{10044947}{906971275}a^{8}-\frac{1634152176}{336875045}a^{6}-\frac{11036321262}{2358125315}a^{4}+\frac{1078390331}{471625063}a^{2}+\frac{144332145}{471625063}$, $\frac{11931186}{906971275}a^{18}+\frac{88194921}{906971275}a^{16}+\frac{296316623}{906971275}a^{14}+\frac{1002102284}{906971275}a^{12}+\frac{427658601}{129567325}a^{10}+\frac{2615271893}{906971275}a^{8}-\frac{3169371087}{181394255}a^{6}-\frac{1000442283}{25913465}a^{4}-\frac{754536641}{36278851}a^{2}+\frac{33388065}{36278851}$, $\frac{101211583}{11790626575}a^{19}-\frac{103928029}{11790626575}a^{18}+\frac{125297812}{2358125315}a^{17}-\frac{4077442}{67375009}a^{16}+\frac{342048916}{2358125315}a^{15}-\frac{445961531}{2358125315}a^{14}+\frac{1218223033}{2358125315}a^{13}-\frac{1545413196}{2358125315}a^{12}+\frac{3374493023}{2358125315}a^{11}-\frac{4524162029}{2358125315}a^{10}-\frac{27098834}{129567325}a^{9}-\frac{1018660686}{906971275}a^{8}-\frac{28929481978}{2358125315}a^{7}+\frac{5506273326}{471625063}a^{6}-\frac{27592139741}{2358125315}a^{5}+\frac{44228836074}{2358125315}a^{4}+\frac{2051103805}{471625063}a^{3}+\frac{2215567815}{471625063}a^{2}+\frac{1274341697}{471625063}a-\frac{880991654}{471625063}$, $\frac{4902566}{1684375225}a^{19}+\frac{10543688}{11790626575}a^{18}+\frac{9771347}{336875045}a^{17}-\frac{8972213}{11790626575}a^{16}+\frac{289752461}{2358125315}a^{15}-\frac{305501639}{11790626575}a^{14}+\frac{188935133}{471625063}a^{13}-\frac{791869352}{11790626575}a^{12}+\frac{430294546}{336875045}a^{11}-\frac{3270844881}{11790626575}a^{10}+\frac{2008935063}{906971275}a^{9}-\frac{1141090009}{906971275}a^{8}-\frac{7260982156}{2358125315}a^{7}-\frac{3901085522}{2358125315}a^{6}-\frac{43573688463}{2358125315}a^{5}+\frac{17046735786}{2358125315}a^{4}-\frac{9643687112}{471625063}a^{3}+\frac{5057062463}{471625063}a^{2}-\frac{2884933711}{471625063}a+\frac{842643229}{471625063}$, $\frac{96798042}{11790626575}a^{19}+\frac{21302829}{11790626575}a^{18}+\frac{739305043}{11790626575}a^{17}+\frac{162435552}{11790626575}a^{16}+\frac{2558426224}{11790626575}a^{15}+\frac{580535451}{11790626575}a^{14}+\frac{8566648457}{11790626575}a^{13}+\frac{2024098338}{11790626575}a^{12}+\frac{3687605263}{1684375225}a^{11}+\frac{853857752}{1684375225}a^{10}+\frac{2007596544}{906971275}a^{9}+\frac{82258682}{181394255}a^{8}-\frac{24884323502}{2358125315}a^{7}-\frac{5997976239}{2358125315}a^{6}-\frac{12435911744}{471625063}a^{5}-\frac{14299655283}{2358125315}a^{4}-\frac{7929997290}{471625063}a^{3}-\frac{1825610016}{471625063}a^{2}-\frac{704357105}{471625063}a+\frac{57409575}{471625063}$, $\frac{678291052}{11790626575}a^{19}+\frac{308788936}{11790626575}a^{18}+\frac{5562200453}{11790626575}a^{17}+\frac{2457951408}{11790626575}a^{16}+\frac{20688712509}{11790626575}a^{15}+\frac{1268784857}{1684375225}a^{14}+\frac{69335940372}{11790626575}a^{13}+\frac{29921865182}{11790626575}a^{12}+\frac{213018763046}{11790626575}a^{11}+\frac{13050952873}{1684375225}a^{10}+\frac{21050629494}{906971275}a^{9}+\frac{235362904}{25913465}a^{8}-\frac{32572607153}{471625063}a^{7}-\frac{75867247343}{2358125315}a^{6}-\frac{541448900844}{2358125315}a^{5}-\frac{226318188319}{2358125315}a^{4}-\frac{96774372480}{471625063}a^{3}-\frac{37499649809}{471625063}a^{2}-\frac{24051988236}{471625063}a-\frac{8877720214}{471625063}$
|
| |
| Regulator: | \( 6003782.69041 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{8}\cdot 6003782.69041 \cdot 1}{2\cdot\sqrt{267741240538215680000000000000}}\cr\approx \mathstrut & 0.225473892594 \end{aligned}\] (assuming GRH)
Galois group
$C_2^8.(C_4\times S_5)$ (as 20T802):
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for $C_2^8.(C_4\times S_5)$ |
| Character table for $C_2^8.(C_4\times S_5)$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.3.19015.1, 10.6.45196278125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | 20.4.274167030311132856320000000000000.4 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}{,}\,{\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{8}$ | ${\href{/padicField/11.10.0.1}{10} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{3}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.5.0.1}{5} }^{4}$ | $20$ | ${\href{/padicField/29.10.0.1}{10} }^{2}$ | ${\href{/padicField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/padicField/41.5.0.1}{5} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.10.2.20a22.1 | $x^{20} + 2 x^{17} + 2 x^{16} + 2 x^{15} + 2 x^{14} + 4 x^{13} + 7 x^{12} + 6 x^{11} + 7 x^{10} + 6 x^{9} + 8 x^{8} + 12 x^{7} + 9 x^{6} + 8 x^{5} + 9 x^{4} + 8 x^{3} + 7 x^{2} + 4 x + 3$ | $2$ | $10$ | $20$ | 20T344 | not computed |
|
\(5\)
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 5.3.4.9a1.3 | $x^{12} + 12 x^{10} + 12 x^{9} + 54 x^{8} + 108 x^{7} + 162 x^{6} + 324 x^{5} + 405 x^{4} + 432 x^{3} + 486 x^{2} + 324 x + 86$ | $4$ | $3$ | $9$ | $C_{12}$ | $$[\ ]_{4}^{3}$$ | |
|
\(3803\)
| Deg $8$ | $2$ | $4$ | $4$ | |||
| Deg $12$ | $1$ | $12$ | $0$ | $C_{12}$ | $$[\ ]^{12}$$ |