Normalized defining polynomial
\( x^{20} - 2 x^{19} + 3 x^{18} - 44 x^{17} + 103 x^{16} - 82 x^{15} + 38 x^{14} + 566 x^{13} - 1128 x^{12} - 468 x^{11} + 773 x^{10} + 1954 x^{9} - 7191 x^{8} + 22962 x^{7} - 29020 x^{6} - 11274 x^{5} + 51246 x^{4} - 35544 x^{3} + 5377 x^{2} + 2216 x - 768 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26627057862792569136621049085952=2^{18}\cdot 3\cdot 41^{3}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 41, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{262993545401382594328558233849728741334235240} a^{19} - \frac{58527252678121622395205760682776390459444309}{131496772700691297164279116924864370667117620} a^{18} - \frac{58861141969211246558703348993463921831125869}{262993545401382594328558233849728741334235240} a^{17} - \frac{5389558172462514367388545433829977236268099}{13149677270069129716427911692486437066711762} a^{16} - \frac{48636289874635123636956900196010492416096337}{262993545401382594328558233849728741334235240} a^{15} - \frac{11690939371567119198393138962620228920797597}{26299354540138259432855823384972874133423524} a^{14} + \frac{10351726273792380988249782318715984177871719}{131496772700691297164279116924864370667117620} a^{13} - \frac{664896652799613482941379406951276078598901}{131496772700691297164279116924864370667117620} a^{12} - \frac{8176835536668961470829426166169743248126977}{32874193175172824291069779231216092666779405} a^{11} + \frac{7333686806201233684847907931660860885251527}{65748386350345648582139558462432185333558810} a^{10} + \frac{6807815549047199992542172552522650335454161}{52598709080276518865711646769945748266847048} a^{9} - \frac{30024616503438858614019549747205272210247743}{131496772700691297164279116924864370667117620} a^{8} + \frac{25132250804082435287091527902985215770907}{143320733188764356582320563405846725522744} a^{7} - \frac{32939705196996361212122782826305767912448999}{131496772700691297164279116924864370667117620} a^{6} + \frac{20020921601468710274449986378864581587946697}{65748386350345648582139558462432185333558810} a^{5} - \frac{19367692536143667160822356548824942062439121}{131496772700691297164279116924864370667117620} a^{4} - \frac{16391939134326070903773341611540953268879321}{131496772700691297164279116924864370667117620} a^{3} - \frac{14363778331746871500014461167898527064715144}{32874193175172824291069779231216092666779405} a^{2} + \frac{72032954045340688935162844874562737058368449}{262993545401382594328558233849728741334235240} a + \frac{15076065401289461322624320307738680363409259}{32874193175172824291069779231216092666779405}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1415203416.11 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 655360 |
| The 331 conjugacy class representatives for t20n946 are not computed |
| Character table for t20n946 is not computed |
Intermediate fields
| 5.5.2382032.1, 10.6.232637134409984.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $16{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | $16{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | $16{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $41$ | 41.4.3.4 | $x^{4} + 8856$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.8.0.1 | $x^{8} - x + 12$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 41.8.0.1 | $x^{8} - x + 12$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $53$ | 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |