Normalized defining polynomial
\( x^{20} - 4 x^{19} - 6 x^{18} + 24 x^{17} + 57 x^{16} - 64 x^{15} - 634 x^{14} - 380 x^{13} + 2261 x^{12} + 4104 x^{11} - 11312 x^{10} - 21592 x^{9} + 19470 x^{8} + 61488 x^{7} + 5640 x^{6} - 37696 x^{5} + 70364 x^{4} - 1856 x^{3} + 15616 x^{2} + 18368 x + 6712 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2653220688038813933780612524539904=2^{50}\cdot 31^{6}\cdot 227^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 227$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{14} + \frac{1}{4} a^{10} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} + \frac{1}{4} a^{11} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{8} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{13} - \frac{1}{2} a^{10} - \frac{1}{8} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{48} a^{18} - \frac{1}{24} a^{16} + \frac{1}{12} a^{15} - \frac{1}{48} a^{14} - \frac{1}{12} a^{13} + \frac{1}{8} a^{12} - \frac{1}{48} a^{10} - \frac{1}{12} a^{9} - \frac{1}{3} a^{8} - \frac{1}{4} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3} - \frac{1}{12} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{1254036452963551636207273476107453783691184897296} a^{19} - \frac{8082332560543688925020880260770954980947104409}{1254036452963551636207273476107453783691184897296} a^{18} + \frac{6058106510585286381671900792774210765166893087}{627018226481775818103636738053726891845592448648} a^{17} - \frac{32539659764424758499431921713773985493594291255}{627018226481775818103636738053726891845592448648} a^{16} + \frac{3784382764997987825392585752774342141159072477}{32154780845219272723263422464293686761312433264} a^{15} + \frac{108326882504271001249127057653715685903738006457}{1254036452963551636207273476107453783691184897296} a^{14} - \frac{64899854127529518686396077875710128627720286447}{627018226481775818103636738053726891845592448648} a^{13} + \frac{24954331357427623256226105090400681963448597269}{209006075493925272701212246017908963948530816216} a^{12} - \frac{6913093383022319089221908016623255356167706021}{96464342535657818169790267392881060283937299792} a^{11} - \frac{1853258041810963415655773202366275902362522167}{1254036452963551636207273476107453783691184897296} a^{10} - \frac{78853263675952995638633791929548305905098756621}{313509113240887909051818369026863445922796224324} a^{9} - \frac{42403330557885150754512227070558791277754188665}{156754556620443954525909184513431722961398112162} a^{8} + \frac{142764870024736175363831837416244173306354895807}{313509113240887909051818369026863445922796224324} a^{7} - \frac{154476124783450864862972446482352920422623815821}{313509113240887909051818369026863445922796224324} a^{6} - \frac{5224527865328459432529415993561877409287947081}{26125759436740659087651530752238620493566352027} a^{5} + \frac{12238124376049130019870764407454238405789468927}{52251518873481318175303061504477240987132704054} a^{4} - \frac{55911624120147240945403214361574667666397062267}{313509113240887909051818369026863445922796224324} a^{3} - \frac{90095318711229370640319803386112866461224744333}{313509113240887909051818369026863445922796224324} a^{2} - \frac{9176036829311257034807835173549303935760060489}{78377278310221977262954592256715861480699056081} a + \frac{22523561233093227197326254815047354777912527617}{78377278310221977262954592256715861480699056081}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 636682362.202 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 216 conjugacy class representatives for t20n1025 are not computed |
| Character table for t20n1025 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.207699287474176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | $16{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.7 | $x^{8} + 2 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.12.28.57 | $x^{12} + 2 x^{10} - 2 x^{8} + 4 x^{5} - 2 x^{4} - 2$ | $12$ | $1$ | $28$ | 12T48 | $[2, 8/3, 8/3, 3]_{3}^{2}$ | |
| 31 | Data not computed | ||||||
| 227 | Data not computed | ||||||