Normalized defining polynomial
\( x^{20} - 45 x^{18} + 990 x^{16} - 4 x^{15} - 13780 x^{14} - 130 x^{13} + 132625 x^{12} + 3010 x^{11} - 924247 x^{10} - 29740 x^{9} + 4772700 x^{8} + 158310 x^{7} - 18138180 x^{6} - 205998 x^{5} + 48188040 x^{4} - 1739160 x^{3} - 78750420 x^{2} + 5650100 x + 58105324 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2606231402843906250000000000000000=2^{16}\cdot 3^{10}\cdot 5^{22}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9}$, $\frac{1}{14} a^{18} - \frac{3}{14} a^{17} + \frac{1}{7} a^{16} - \frac{1}{14} a^{15} - \frac{1}{7} a^{14} - \frac{1}{14} a^{13} + \frac{3}{14} a^{10} + \frac{5}{14} a^{9} + \frac{3}{7} a^{8} - \frac{1}{2} a^{7} + \frac{3}{7} a^{6} + \frac{1}{14} a^{5} + \frac{2}{7} a^{4} - \frac{2}{7} a^{3} - \frac{3}{7} a^{2} - \frac{2}{7} a - \frac{3}{7}$, $\frac{1}{121273819132579385744869648546667403107492188448490516732086} a^{19} + \frac{2244736947959549821226155390766804891552429453100645996767}{121273819132579385744869648546667403107492188448490516732086} a^{18} - \frac{10596446067343116505143722817220965089641278796984933112993}{121273819132579385744869648546667403107492188448490516732086} a^{17} - \frac{8772615621907028938928360689258946603782603690598721262835}{121273819132579385744869648546667403107492188448490516732086} a^{16} + \frac{175811739488554363677957637438269185030527181458018760839}{1237487950332442711682343352517014317423389678045821599307} a^{15} - \frac{7140002498155017668483658241312952696893260525788786985369}{60636909566289692872434824273333701553746094224245258366043} a^{14} + \frac{3481521752576381412927075901525490649660216592955918981493}{121273819132579385744869648546667403107492188448490516732086} a^{13} - \frac{730620319016944946695896190744750309665978663289977147547}{17324831304654197963552806935238200443927455492641502390298} a^{12} - \frac{6992697565892467031350371559347090073135943043355817336875}{60636909566289692872434824273333701553746094224245258366043} a^{11} - \frac{603839297282414274817146168764250659873530265325194891917}{60636909566289692872434824273333701553746094224245258366043} a^{10} + \frac{12879827338688686105640348620614741830008604655618677380144}{60636909566289692872434824273333701553746094224245258366043} a^{9} - \frac{29753876733648390692672910931557922847082978433256705696223}{60636909566289692872434824273333701553746094224245258366043} a^{8} - \frac{55743742887026756455640301435725438856338950516872081562837}{121273819132579385744869648546667403107492188448490516732086} a^{7} + \frac{50811207968060326504590722454286864732771400035394383035011}{121273819132579385744869648546667403107492188448490516732086} a^{6} + \frac{3096694902764487603643915704169178791901624059288800105096}{60636909566289692872434824273333701553746094224245258366043} a^{5} + \frac{6222559820613699490989247721732368881132442458773116234614}{60636909566289692872434824273333701553746094224245258366043} a^{4} - \frac{10534288228136499826111757528085325966242242394598825497074}{60636909566289692872434824273333701553746094224245258366043} a^{3} - \frac{20816862875273251705295072466801729321006437209565679907801}{60636909566289692872434824273333701553746094224245258366043} a^{2} - \frac{3003550740394755660949577455841962900954982454886923594947}{60636909566289692872434824273333701553746094224245258366043} a - \frac{22567424494664241836349375660074317915399134816967121600845}{60636909566289692872434824273333701553746094224245258366043}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1303014860.790379 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{105}) \), \(\Q(\sqrt{5}, \sqrt{21})\), 5.1.50000.1, 10.2.12500000000.1, 10.2.10210252500000000.1, 10.2.51051262500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |