Normalized defining polynomial
\( x^{20} + 10 x^{18} - 10 x^{17} + 5 x^{16} - 122 x^{15} - 210 x^{14} - 530 x^{13} - 200 x^{12} + 390 x^{11} + 1470 x^{10} + 3730 x^{9} + 5500 x^{8} + 4930 x^{7} + 8210 x^{6} + 9546 x^{5} + 1495 x^{4} - 2830 x^{3} - 1480 x^{2} - 640 x + 239 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(260316795156250000000000000000=2^{16}\cdot 5^{22}\cdot 7^{8}\cdot 17^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{5} - \frac{3}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{3}{8} a + \frac{1}{8}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{3}{8} a^{4} + \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{3}{8}$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{3}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{3}{16} a^{6} - \frac{3}{16} a^{5} + \frac{1}{16} a^{4} - \frac{7}{16} a^{3} - \frac{3}{16} a^{2} - \frac{1}{16} a - \frac{7}{16}$, $\frac{1}{16} a^{16} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{3}{8} a^{2} - \frac{1}{8} a + \frac{5}{16}$, $\frac{1}{16} a^{17} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{3}{8} a^{2} - \frac{1}{16} a - \frac{1}{8}$, $\frac{1}{32} a^{18} - \frac{1}{32} a^{16} - \frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{8} a^{10} + \frac{3}{16} a^{9} + \frac{3}{16} a^{8} - \frac{1}{4} a^{7} - \frac{3}{16} a^{6} - \frac{3}{16} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{5}{32} a^{2} - \frac{7}{16} a - \frac{5}{32}$, $\frac{1}{603508364640013979303410100969568} a^{19} + \frac{1132418997047338237442074799555}{150877091160003494825852525242392} a^{18} + \frac{16955835866435033658718766967521}{603508364640013979303410100969568} a^{17} - \frac{162274502857645561399328468987}{6286545465000145617743855218433} a^{16} - \frac{3818621837622914121666204508643}{301754182320006989651705050484784} a^{15} - \frac{9077446568212393315197819679571}{301754182320006989651705050484784} a^{14} + \frac{5603345503612210842346147225453}{150877091160003494825852525242392} a^{13} - \frac{501903372984781023753192544821}{50292363720001164941950841747464} a^{12} - \frac{4119058058394517468390777783535}{150877091160003494825852525242392} a^{11} - \frac{27793464516801284858341544946761}{301754182320006989651705050484784} a^{10} + \frac{35520897684214345502268583030277}{301754182320006989651705050484784} a^{9} - \frac{367918100732938569089576546553}{6286545465000145617743855218433} a^{8} - \frac{52275751264019265547885864379737}{301754182320006989651705050484784} a^{7} + \frac{13750504458253582471452873508617}{100584727440002329883901683494928} a^{6} - \frac{9555002536338525050060518046845}{150877091160003494825852525242392} a^{5} - \frac{57283799609722670991594584347409}{150877091160003494825852525242392} a^{4} - \frac{4506261564548230833476837072895}{201169454880004659767803366989856} a^{3} + \frac{63692111902950173224537882731283}{301754182320006989651705050484784} a^{2} + \frac{68346479134130361097608608550903}{201169454880004659767803366989856} a - \frac{10586497910331413255053014300361}{37719272790000873706463131310598}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10386308.2947 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 22 conjugacy class representatives for t20n140 |
| Character table for t20n140 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.2450000.1, 10.2.102042500000000.1, 10.2.510212500000000.1, 10.10.30012500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 17.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |