Normalized defining polynomial
\( x^{20} - x^{19} + 5 x^{18} - 5 x^{17} - 5 x^{16} + 6 x^{15} - 132 x^{14} + 436 x^{13} - 1129 x^{12} + 2613 x^{11} - 4464 x^{10} + 6829 x^{9} - 10176 x^{8} + 12663 x^{7} - 11903 x^{6} + 7141 x^{5} - 1038 x^{4} - 1531 x^{3} + 443 x^{2} + 403 x - 169 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(253408254667989956596734833=17^{15}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3947503104103853912771907700119017} a^{19} + \frac{961719605957558092344003438795127}{3947503104103853912771907700119017} a^{18} + \frac{964521652304387496886003184497313}{3947503104103853912771907700119017} a^{17} + \frac{1563714015716790655895544703410966}{3947503104103853912771907700119017} a^{16} + \frac{781216188335501483631018059065200}{3947503104103853912771907700119017} a^{15} - \frac{292934439735626245935624562111257}{3947503104103853912771907700119017} a^{14} + \frac{1430434250047104035817299829431882}{3947503104103853912771907700119017} a^{13} + \frac{1481776140036566965931475042328090}{3947503104103853912771907700119017} a^{12} + \frac{1489689584479051625946142540117732}{3947503104103853912771907700119017} a^{11} + \frac{42778449339068357288248812204678}{303654084931065685597839053855309} a^{10} - \frac{504753400733481019870002157622320}{3947503104103853912771907700119017} a^{9} - \frac{611015076849253789612802783006954}{3947503104103853912771907700119017} a^{8} + \frac{332470876165164178332359758938132}{3947503104103853912771907700119017} a^{7} - \frac{1094775971697531339529044991123162}{3947503104103853912771907700119017} a^{6} - \frac{992142522617131234679896843096009}{3947503104103853912771907700119017} a^{5} - \frac{1530869665268133187756396592681554}{3947503104103853912771907700119017} a^{4} + \frac{1805105050460787666027681432612582}{3947503104103853912771907700119017} a^{3} - \frac{261800980262029820870601922555675}{3947503104103853912771907700119017} a^{2} - \frac{143891581763047031532362967498222}{3947503104103853912771907700119017} a - \frac{51183596629136194999757964036643}{303654084931065685597839053855309}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 152775.352277 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times S_5$ (as 20T123):
| A non-solvable group of order 480 |
| The 28 conjugacy class representatives for $C_4\times S_5$ |
| Character table for $C_4\times S_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 5.1.1649.1, 10.2.13359434513.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.12.9.1 | $x^{12} - 34 x^{8} - 10115 x^{4} - 397953$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| $97$ | 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |