Normalized defining polynomial
\( x^{20} - 5 x^{18} - 10 x^{17} + 5 x^{16} + 50 x^{15} + 55 x^{14} - 70 x^{13} - 180 x^{12} - 90 x^{11} + 88 x^{10} + 250 x^{9} + 290 x^{8} + 60 x^{7} - 195 x^{6} - 100 x^{5} + 30 x^{4} + 20 x^{3} + 15 x^{2} - 10 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25000000000000000000000000=2^{24}\cdot 5^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{1442493746323896469} a^{19} + \frac{411254159238905278}{1442493746323896469} a^{18} + \frac{69015115140141645}{1442493746323896469} a^{17} + \frac{48145433237616808}{1442493746323896469} a^{16} + \frac{187238968589504288}{1442493746323896469} a^{15} - \frac{656865971099294966}{1442493746323896469} a^{14} + \frac{391971903862878215}{1442493746323896469} a^{13} + \frac{522879621497093074}{1442493746323896469} a^{12} + \frac{566922030344488262}{1442493746323896469} a^{11} + \frac{96060249156705115}{206070535189128067} a^{10} - \frac{283226112551815877}{1442493746323896469} a^{9} - \frac{686900379002183067}{1442493746323896469} a^{8} - \frac{418997442700735205}{1442493746323896469} a^{7} - \frac{513865909306343455}{1442493746323896469} a^{6} + \frac{320785677145194365}{1442493746323896469} a^{5} - \frac{194027268856491851}{1442493746323896469} a^{4} + \frac{356356605090603881}{1442493746323896469} a^{3} + \frac{297478290855814370}{1442493746323896469} a^{2} - \frac{118162023445193445}{1442493746323896469} a - \frac{32005849040641396}{1442493746323896469}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 94707.1867115 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times A_5$ (as 20T31):
| A non-solvable group of order 120 |
| The 10 conjugacy class representatives for $C_2\times A_5$ |
| Character table for $C_2\times A_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.2.1000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.16 | $x^{8} + 24 x^{2} + 4$ | $4$ | $2$ | $12$ | $A_4\times C_2$ | $[2, 2]^{6}$ |
| 2.12.12.11 | $x^{12} - 6 x^{10} - 73 x^{8} + 140 x^{6} + 79 x^{4} - 6 x^{2} + 57$ | $2$ | $6$ | $12$ | $A_4 \times C_2$ | $[2, 2]^{6}$ | |
| $5$ | 5.10.13.2 | $x^{10} + 10 x^{4} + 5$ | $10$ | $1$ | $13$ | $D_{10}$ | $[3/2]_{2}^{2}$ |
| 5.10.13.2 | $x^{10} + 10 x^{4} + 5$ | $10$ | $1$ | $13$ | $D_{10}$ | $[3/2]_{2}^{2}$ |