Normalized defining polynomial
\( x^{20} - 75 x^{18} + 2655 x^{16} - 4 x^{15} - 58060 x^{14} - 190 x^{13} + 864535 x^{12} + 8230 x^{11} - 9154543 x^{10} - 125530 x^{9} + 69990105 x^{8} + 899850 x^{7} - 382460220 x^{6} - 1148286 x^{5} + 1428543135 x^{4} - 22732170 x^{3} - 3271307835 x^{2} + 97709600 x + 3444019951 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(239309216447570156250000000000000000=2^{16}\cdot 3^{10}\cdot 5^{22}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{14} a^{18} - \frac{3}{14} a^{17} + \frac{3}{14} a^{16} + \frac{1}{14} a^{15} + \frac{3}{14} a^{14} + \frac{1}{7} a^{12} - \frac{1}{7} a^{10} + \frac{2}{7} a^{9} + \frac{5}{14} a^{8} - \frac{2}{7} a^{7} + \frac{3}{14} a^{6} - \frac{5}{14} a^{5} - \frac{2}{7} a^{4} - \frac{3}{14} a^{3} - \frac{3}{14} a^{2} + \frac{3}{7} a + \frac{1}{14}$, $\frac{1}{25882932252342560970679673304349870245092618246943953030262986936798} a^{19} - \frac{49657083968194570836837401264530583828916901182218560847481426223}{3697561750334651567239953329192838606441802606706279004323283848114} a^{18} + \frac{3060663325360665260603385284856772279188710684463277184396818459212}{12941466126171280485339836652174935122546309123471976515131493468399} a^{17} - \frac{1675730194517964173286162054445513107582302131167627782552230016525}{12941466126171280485339836652174935122546309123471976515131493468399} a^{16} + \frac{255330328834557708922868981249643293088877001148083663963853221069}{12941466126171280485339836652174935122546309123471976515131493468399} a^{15} - \frac{23307450347126080059613199591589620040188836847753084291525112533}{681129796114277920281044034324996585397174164393261921849025972021} a^{14} - \frac{1328715129111996828249078329873993712793340494354884432438449896228}{12941466126171280485339836652174935122546309123471976515131493468399} a^{13} + \frac{1764323148611956311858307941024100298021720172163447497152732246989}{12941466126171280485339836652174935122546309123471976515131493468399} a^{12} + \frac{2545810025209901473613973393734814355880542034548765778126726396664}{12941466126171280485339836652174935122546309123471976515131493468399} a^{11} - \frac{155795469690497825436999047125900542393992130897793569003900016624}{681129796114277920281044034324996585397174164393261921849025972021} a^{10} + \frac{4492458227718190474573515581442045659243335051530627740531980281355}{25882932252342560970679673304349870245092618246943953030262986936798} a^{9} + \frac{1243720378559729298980432284032876242105995654922127370161205401612}{12941466126171280485339836652174935122546309123471976515131493468399} a^{8} - \frac{5205847161412056140923966178842608270881321898083458845054289351595}{25882932252342560970679673304349870245092618246943953030262986936798} a^{7} + \frac{7005447552414964566585481041907859161873603778896986864671499184293}{25882932252342560970679673304349870245092618246943953030262986936798} a^{6} + \frac{9868490698642719100903170088544576244808062897656126822587978188567}{25882932252342560970679673304349870245092618246943953030262986936798} a^{5} + \frac{6343300364731231799615950605368475061432163009560648422667217591763}{12941466126171280485339836652174935122546309123471976515131493468399} a^{4} + \frac{6100759535284120068590861079571108250652373396949267538992457440788}{12941466126171280485339836652174935122546309123471976515131493468399} a^{3} + \frac{744115955410659479699872500738434701274634370816018745213782951948}{12941466126171280485339836652174935122546309123471976515131493468399} a^{2} + \frac{2991454570791683692270412520099531832359694121543005789420415726507}{25882932252342560970679673304349870245092618246943953030262986936798} a - \frac{4174726979641987600542200294223126662211781667193483958248716681362}{12941466126171280485339836652174935122546309123471976515131493468399}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6685106585.539339 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{165}) \), \(\Q(\sqrt{5}, \sqrt{33})\), 5.1.50000.1, 10.2.12500000000.1, 10.2.97838482500000000.1, 10.2.489192412500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| $11$ | 11.10.5.1 | $x^{10} - 242 x^{6} - 1331 x^{4} - 131769 x^{2} - 4026275$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 11.10.5.1 | $x^{10} - 242 x^{6} - 1331 x^{4} - 131769 x^{2} - 4026275$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |