Normalized defining polynomial
\( x^{20} - 8 x^{18} - 4 x^{17} + 24 x^{16} + 10 x^{15} - 26 x^{14} + x^{13} - x^{12} + 112 x^{10} - 2 x^{9} - 330 x^{8} - 213 x^{7} + 168 x^{6} + 215 x^{5} + 81 x^{4} + 28 x^{3} + 14 x^{2} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2392888293548614501953125=5^{15}\cdot 601^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 601$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5609} a^{18} + \frac{2731}{5609} a^{17} + \frac{1326}{5609} a^{16} - \frac{2476}{5609} a^{15} + \frac{1076}{5609} a^{14} - \frac{1327}{5609} a^{13} + \frac{2543}{5609} a^{12} - \frac{505}{5609} a^{11} + \frac{2301}{5609} a^{10} + \frac{2121}{5609} a^{9} + \frac{246}{5609} a^{8} - \frac{1970}{5609} a^{7} - \frac{952}{5609} a^{6} - \frac{1162}{5609} a^{5} - \frac{1405}{5609} a^{4} + \frac{1440}{5609} a^{3} - \frac{270}{5609} a^{2} + \frac{562}{5609} a - \frac{162}{5609}$, $\frac{1}{21903351982527131} a^{19} + \frac{597038739611}{21903351982527131} a^{18} + \frac{157065646444628}{21903351982527131} a^{17} - \frac{10454764870778167}{21903351982527131} a^{16} - \frac{3069711377357402}{21903351982527131} a^{15} + \frac{7176182168066818}{21903351982527131} a^{14} - \frac{7002501043877290}{21903351982527131} a^{13} + \frac{2754357591685707}{21903351982527131} a^{12} + \frac{8873555534990310}{21903351982527131} a^{11} + \frac{10314693825468026}{21903351982527131} a^{10} + \frac{8589223330512014}{21903351982527131} a^{9} - \frac{5821513244429892}{21903351982527131} a^{8} + \frac{10168480824286714}{21903351982527131} a^{7} - \frac{39037706816528}{21903351982527131} a^{6} + \frac{6184829011749592}{21903351982527131} a^{5} - \frac{3555749724044548}{21903351982527131} a^{4} - \frac{6884908989364872}{21903351982527131} a^{3} - \frac{1290483324979173}{21903351982527131} a^{2} + \frac{9440541523729023}{21903351982527131} a + \frac{10290231345309694}{21903351982527131}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14441.4999597 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5^2:C_4$ (as 20T94):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $D_5^2:C_4$ |
| Character table for $D_5^2:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.75125.1, 10.2.1128753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}$ | $20$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 601 | Data not computed | ||||||