Normalized defining polynomial
\( x^{20} - 12 x^{18} - 40 x^{17} - 74 x^{16} + 205 x^{15} - 136 x^{14} - 430 x^{13} + 699 x^{12} + 6830 x^{11} + 8362 x^{10} - 560 x^{9} + 51809 x^{8} + 161485 x^{7} + 152131 x^{6} - 22055 x^{5} - 47929 x^{4} + 45950 x^{3} + 146950 x^{2} + 215710 x + 153355 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2382434322822520356765777587890625=5^{15}\cdot 61^{7}\cdot 397^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{17621244577460939346939992633396458934566484193399672943770841} a^{19} + \frac{1057093595665553464129811266966094346043381884671327479099544}{17621244577460939346939992633396458934566484193399672943770841} a^{18} + \frac{116047949289721948882567387126603003152688438070772042104297}{1355480352112379949764614817953573764197421861030744072597757} a^{17} + \frac{7571093578506501162512485413542610730526665822419090388741950}{17621244577460939346939992633396458934566484193399672943770841} a^{16} - \frac{3776128635397789976443249163321313826035206758984012836419071}{17621244577460939346939992633396458934566484193399672943770841} a^{15} + \frac{197359731527811691771179701659510630014892886868917383129132}{17621244577460939346939992633396458934566484193399672943770841} a^{14} - \frac{504369902316554791943019350223190962170343156431063822928304}{1355480352112379949764614817953573764197421861030744072597757} a^{13} + \frac{8772200083459193439585090847476289525861168066259756480546385}{17621244577460939346939992633396458934566484193399672943770841} a^{12} - \frac{1861497795773565213161782197798049617158003550747099433590641}{17621244577460939346939992633396458934566484193399672943770841} a^{11} - \frac{5607769806243833330211619309546921242772040219350646646881028}{17621244577460939346939992633396458934566484193399672943770841} a^{10} - \frac{6644945152440789204558915268193779451881173438993162165156834}{17621244577460939346939992633396458934566484193399672943770841} a^{9} - \frac{4852569124090613581045921029369650750043453954799041904430614}{17621244577460939346939992633396458934566484193399672943770841} a^{8} - \frac{2451333922365147152429782565038429451626287430749807340444522}{17621244577460939346939992633396458934566484193399672943770841} a^{7} - \frac{5522047807488174390715154980699450311722544357789041786512479}{17621244577460939346939992633396458934566484193399672943770841} a^{6} - \frac{8767285524539362410527059758037810085239363284209956236530663}{17621244577460939346939992633396458934566484193399672943770841} a^{5} - \frac{3240723015773494768468935429991439338296172241972558977200403}{17621244577460939346939992633396458934566484193399672943770841} a^{4} - \frac{160331966967243134948687917727230486657940485837263429179971}{17621244577460939346939992633396458934566484193399672943770841} a^{3} + \frac{6418726313434752425182540571415923867068270891400126263040764}{17621244577460939346939992633396458934566484193399672943770841} a^{2} - \frac{4529351396385993506460199961861111694854422681541596507821643}{17621244577460939346939992633396458934566484193399672943770841} a - \frac{6369602015573335251515815382187544641454263287328411245035303}{17621244577460939346939992633396458934566484193399672943770841}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 134531227.411 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15360 |
| The 90 conjugacy class representatives for t20n466 are not computed |
| Character table for t20n466 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.24217.1, 10.10.1832697153125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | $20$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||