Normalized defining polynomial
\( x^{20} - 5 x^{19} + 13 x^{18} - 33 x^{17} - 3 x^{16} - 644 x^{15} + 1679 x^{14} - 7955 x^{13} + 3033 x^{12} + 9864 x^{11} - 112213 x^{10} + 227014 x^{9} - 433032 x^{8} + 484980 x^{7} - 485421 x^{6} + 332544 x^{5} - 155528 x^{4} + 45122 x^{3} + 3946 x^{2} - 9272 x + 3721 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2382434322822520356765777587890625=5^{15}\cdot 61^{7}\cdot 397^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2865041705190792974785544558165485179469493922407504669} a^{19} - \frac{595271633475266307601369839548842106101521802451953189}{2865041705190792974785544558165485179469493922407504669} a^{18} + \frac{1353429683741139682209365628526746143456023387218501515}{2865041705190792974785544558165485179469493922407504669} a^{17} + \frac{889374168233171258407127608378522495057121049833990564}{2865041705190792974785544558165485179469493922407504669} a^{16} + \frac{619378085177355647686540995741912903814979483788954867}{2865041705190792974785544558165485179469493922407504669} a^{15} + \frac{742836320905206822425205506341855583247688243913730355}{2865041705190792974785544558165485179469493922407504669} a^{14} + \frac{1142362474274531621958352532288436188849021455492134022}{2865041705190792974785544558165485179469493922407504669} a^{13} + \frac{272691871294723960311865675206270552593501538115998056}{2865041705190792974785544558165485179469493922407504669} a^{12} - \frac{723906642612367897804384740617509697099782939134972884}{2865041705190792974785544558165485179469493922407504669} a^{11} + \frac{599048834973030026108319292866416009560065395508518873}{2865041705190792974785544558165485179469493922407504669} a^{10} + \frac{25190634005119326216504417976934302129113046539347844}{60958334152995595208203075705648620839776466434202227} a^{9} - \frac{882293525297445451370215138781488315558783165864984603}{2865041705190792974785544558165485179469493922407504669} a^{8} - \frac{299726164903529287689297607214542139827025727535278759}{2865041705190792974785544558165485179469493922407504669} a^{7} + \frac{880595633282002126808209182114147908089178848551054043}{2865041705190792974785544558165485179469493922407504669} a^{6} + \frac{10643961061990751650144591997092425052831043647867699}{39247146646449218832678692577609386020130053731609653} a^{5} - \frac{1288228219006841463455196876175268462760202216140958186}{2865041705190792974785544558165485179469493922407504669} a^{4} - \frac{369108226313366932748418872975360022513604293394234231}{2865041705190792974785544558165485179469493922407504669} a^{3} + \frac{1382954148632200406751398800433853959571077779206094542}{2865041705190792974785544558165485179469493922407504669} a^{2} - \frac{1182268249590596254773783273574491603457592571147906576}{2865041705190792974785544558165485179469493922407504669} a - \frac{7919324724660293801125904724762529698062533088786836}{46967896806406442209599091117466970155237605285368929}$
Class group and class number
$C_{2}\times C_{12}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20042872.3319 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15360 |
| The 90 conjugacy class representatives for t20n466 are not computed |
| Character table for t20n466 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.24217.1, 10.10.1832697153125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | $20$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||