Normalized defining polynomial
\( x^{20} - 6 x^{19} + 4 x^{18} + 24 x^{17} - 2 x^{16} - 54 x^{15} - 50 x^{14} - 32 x^{13} - 722 x^{12} + 1424 x^{11} + 3738 x^{10} - 1104 x^{9} - 5565 x^{8} - 4246 x^{7} - 14422 x^{6} - 28294 x^{5} + 55230 x^{4} + 81154 x^{3} + 1850 x^{2} - 41408 x - 15557 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(234816118336367364984012800000=2^{30}\cdot 5^{5}\cdot 13^{6}\cdot 347^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{52925757568339749367285143467039800673052280759} a^{19} - \frac{4801091283240355409715971687049772757779971}{52925757568339749367285143467039800673052280759} a^{18} - \frac{13479329264159493495841524044663386416038952046}{52925757568339749367285143467039800673052280759} a^{17} + \frac{3133766250221640772794429381692646565285760887}{52925757568339749367285143467039800673052280759} a^{16} - \frac{15124106312218044295133724312860844521349743294}{52925757568339749367285143467039800673052280759} a^{15} + \frac{20307905461228509827282138873634555991288245397}{52925757568339749367285143467039800673052280759} a^{14} - \frac{1014250132163461909546577344320076064315095668}{52925757568339749367285143467039800673052280759} a^{13} - \frac{4587961046861661873383582100686209317049722047}{52925757568339749367285143467039800673052280759} a^{12} + \frac{21158212842310493959329179950166465169871438855}{52925757568339749367285143467039800673052280759} a^{11} - \frac{9546791641874520088043082714626716529244100221}{52925757568339749367285143467039800673052280759} a^{10} - \frac{9600953447107255842589199622242263297256419163}{52925757568339749367285143467039800673052280759} a^{9} + \frac{21051855262654334207075975145058652305768483076}{52925757568339749367285143467039800673052280759} a^{8} + \frac{24114712376413652382343808607671407026733640885}{52925757568339749367285143467039800673052280759} a^{7} - \frac{9432999408091596467868845347891024996284212104}{52925757568339749367285143467039800673052280759} a^{6} - \frac{11431995857731959441235665412157770674267424860}{52925757568339749367285143467039800673052280759} a^{5} - \frac{11406987129371560968952514954595699529556946121}{52925757568339749367285143467039800673052280759} a^{4} - \frac{24199869516872395924148082956301729179970552689}{52925757568339749367285143467039800673052280759} a^{3} + \frac{21456539704024113547225160882126227346396067912}{52925757568339749367285143467039800673052280759} a^{2} - \frac{17105249744962689501921748230000692702512256558}{52925757568339749367285143467039800673052280759} a + \frac{26033063525202254579407567161615073496407359768}{52925757568339749367285143467039800673052280759}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4162822.80502 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n804 are not computed |
| Character table for t20n804 is not computed |
Intermediate fields
| 5.3.4511.1, 10.6.20837499904.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.0.1 | $x^{10} + x^{2} - x + 3$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 347 | Data not computed | ||||||