Normalized defining polynomial
\( x^{20} - 2 x^{19} - 7 x^{18} + 21 x^{17} - 77 x^{16} + 533 x^{15} - 1933 x^{14} + 4400 x^{13} - 6397 x^{12} + 26183 x^{11} - 73376 x^{10} + 113455 x^{9} - 99454 x^{8} + 119205 x^{7} - 194297 x^{6} + 120457 x^{5} - 30647 x^{4} + 37878 x^{3} - 13189 x^{2} - 3276 x + 1521 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23080384986117811607720055947265625=5^{10}\cdot 36497^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{7} a^{18} + \frac{2}{7} a^{17} - \frac{3}{7} a^{16} + \frac{1}{7} a^{15} + \frac{2}{7} a^{14} - \frac{2}{7} a^{13} - \frac{3}{7} a^{12} - \frac{1}{7} a^{10} - \frac{1}{7} a^{9} - \frac{2}{7} a^{8} + \frac{2}{7} a^{7} - \frac{3}{7} a^{6} + \frac{3}{7} a^{5} - \frac{2}{7} a^{4} + \frac{2}{7} a^{3} + \frac{1}{7} a^{2} - \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{42395707704721358005912575200662824784515278433810650589} a^{19} - \frac{115727662621804224916465821523117004774506967609687381}{6056529672103051143701796457237546397787896919115807227} a^{18} + \frac{250249749311015480286144917736593122723818964000690466}{865218524586150163385970922462506628255413845587972461} a^{17} - \frac{284903416988506359938703983510585567711132526101430842}{2018843224034350381233932152412515465929298973038602409} a^{16} + \frac{962822381508842575415444725564777519527284592019329634}{6056529672103051143701796457237546397787896919115807227} a^{15} + \frac{290731666499143934684240501858983017027853601420269577}{3261208284978566000454813476974063444962713725677742353} a^{14} + \frac{10853391022702050046555698089452572750985677963376890374}{42395707704721358005912575200662824784515278433810650589} a^{13} + \frac{12111052067810435874932576185831366700486924653219729883}{42395707704721358005912575200662824784515278433810650589} a^{12} - \frac{10730195354124929087829539044743711192022598342472339886}{42395707704721358005912575200662824784515278433810650589} a^{11} - \frac{17106560313752344607761260851294551132120673536950169324}{42395707704721358005912575200662824784515278433810650589} a^{10} + \frac{1232359339778200229407963549263116291601947015630616556}{6056529672103051143701796457237546397787896919115807227} a^{9} + \frac{4913075471831556793796105903715395712968875471295115433}{42395707704721358005912575200662824784515278433810650589} a^{8} + \frac{2995227346056791870459072854869998816397814261194157199}{6056529672103051143701796457237546397787896919115807227} a^{7} + \frac{6913258836001350501898174544931789724121754800044829016}{14131902568240452668637525066887608261505092811270216863} a^{6} - \frac{3098296114300831815687965630172684276523638873784133570}{42395707704721358005912575200662824784515278433810650589} a^{5} + \frac{8897821398858998266863423916077180437745865614609062944}{42395707704721358005912575200662824784515278433810650589} a^{4} - \frac{5946481504945946397375098236517229037029943362451695857}{42395707704721358005912575200662824784515278433810650589} a^{3} - \frac{2844001621159285746624773073522929704189913849216830477}{14131902568240452668637525066887608261505092811270216863} a^{2} + \frac{18342274749513534724818029675167015971367145437740363491}{42395707704721358005912575200662824784515278433810650589} a - \frac{513119536189360249031749728555696670358926615935765877}{1087069428326188666818271158991354481654237908559247451}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1367913556.67 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n664 are not computed |
| Character table for t20n664 is not computed |
Intermediate fields
| 5.5.36497.1, 10.2.6076891966934125.1, 10.10.1215378393386825.1, 10.2.4162596903125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 36497 | Data not computed | ||||||