Normalized defining polynomial
\( x^{20} - x^{19} - 2 x^{18} + 33 x^{17} - 81 x^{16} - 115 x^{15} + 454 x^{14} - 2019 x^{13} - 623 x^{12} + 737 x^{11} - 14501 x^{10} - 4126 x^{9} + 3362 x^{8} - 64205 x^{7} + 40793 x^{6} - 54693 x^{5} + 4194 x^{4} - 1786 x^{3} - 11914 x^{2} + 12730 x + 6137 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(222590582974652144958325347900390625=5^{16}\cdot 11^{4}\cdot 71^{6}\cdot 167^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 71, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{25} a^{18} + \frac{2}{25} a^{17} + \frac{2}{25} a^{16} + \frac{2}{5} a^{15} - \frac{1}{5} a^{14} - \frac{11}{25} a^{12} - \frac{2}{25} a^{11} - \frac{7}{25} a^{10} - \frac{1}{5} a^{9} - \frac{2}{25} a^{8} + \frac{3}{25} a^{7} - \frac{11}{25} a^{5} + \frac{2}{5} a^{4} + \frac{9}{25} a^{3} + \frac{1}{25} a^{2} - \frac{1}{25} a + \frac{6}{25}$, $\frac{1}{57201612127988841279220199992848863056923114125} a^{19} - \frac{190128317169860003725930764015487128243231303}{11440322425597768255844039998569772611384622825} a^{18} - \frac{12860866932440152731746155568437681526790511457}{57201612127988841279220199992848863056923114125} a^{17} + \frac{22122664484678376120013171940428055552545442601}{57201612127988841279220199992848863056923114125} a^{16} - \frac{607883389081990208784621957676979054856787763}{2288064485119553651168807999713954522276924565} a^{15} - \frac{2690819064532075936226509235162675569718835193}{11440322425597768255844039998569772611384622825} a^{14} + \frac{26149154117412162846449698638686896709672797789}{57201612127988841279220199992848863056923114125} a^{13} - \frac{1404220887045960990366999898106024430499574488}{11440322425597768255844039998569772611384622825} a^{12} - \frac{176012713806145344118601637738707920709621023}{57201612127988841279220199992848863056923114125} a^{11} - \frac{623232696048860184984590681415125065098625361}{57201612127988841279220199992848863056923114125} a^{10} + \frac{11708239752542285334043786861319074878303830583}{57201612127988841279220199992848863056923114125} a^{9} - \frac{10981608526147986993914245007587501160254029213}{57201612127988841279220199992848863056923114125} a^{8} - \frac{10852986529320114490121678678992198844427888201}{57201612127988841279220199992848863056923114125} a^{7} - \frac{8165309809573952870545305637390128742663252136}{57201612127988841279220199992848863056923114125} a^{6} + \frac{1122610087778155569628564250527543142765379813}{3010611164630991646274747368044677002995953375} a^{5} + \frac{9234074263835225877630846959517475023703764114}{57201612127988841279220199992848863056923114125} a^{4} - \frac{23760365934177509742923254108913750055337461802}{57201612127988841279220199992848863056923114125} a^{3} - \frac{204947895476458447898677104095876606648747772}{3010611164630991646274747368044677002995953375} a^{2} + \frac{17167488512905962502384249011217016421881066398}{57201612127988841279220199992848863056923114125} a - \frac{688134109251941150206455749833578933827153983}{3010611164630991646274747368044677002995953375}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12313161081.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 928972800 |
| The 139 conjugacy class representatives for t20n1100 are not computed |
| Character table for t20n1100 is not computed |
Intermediate fields
| 10.10.6645000909765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | $18{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | $18{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | $18{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.5.8.7 | $x^{5} + 10 x^{4} + 5$ | $5$ | $1$ | $8$ | $F_5$ | $[2]^{4}$ | |
| 5.5.8.7 | $x^{5} + 10 x^{4} + 5$ | $5$ | $1$ | $8$ | $F_5$ | $[2]^{4}$ | |
| $11$ | 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $71$ | 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.8.6.2 | $x^{8} + 1491 x^{4} + 609961$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $167$ | $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 167.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 167.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 167.4.2.2 | $x^{4} - 167 x^{2} + 139445$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 167.4.2.2 | $x^{4} - 167 x^{2} + 139445$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |