Normalized defining polynomial
\( x^{20} - 6 x^{19} + 28 x^{18} - 115 x^{17} + 236 x^{16} - 872 x^{15} + 793 x^{14} - 3049 x^{13} - 531 x^{12} + 5303 x^{11} - 19189 x^{10} + 93898 x^{9} - 58075 x^{8} + 299170 x^{7} + 28199 x^{6} + 380724 x^{5} + 203506 x^{4} + 282168 x^{3} + 135251 x^{2} + 77536 x + 3637 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22076337374529449736276184040669=29^{7}\cdot 61^{6}\cdot 397^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{103696083215972093806398603663252582077941860369541364495} a^{19} + \frac{36195294568114748792701258745036105173980700817874632212}{103696083215972093806398603663252582077941860369541364495} a^{18} - \frac{38726142272045056254734702929906040670528062174609279961}{103696083215972093806398603663252582077941860369541364495} a^{17} - \frac{45461190440316281673565324026725194678238607889844586733}{103696083215972093806398603663252582077941860369541364495} a^{16} + \frac{4539718721585096091759835986426983000620546164472433407}{103696083215972093806398603663252582077941860369541364495} a^{15} + \frac{29705321274133599043709937421032204693759755903749407854}{103696083215972093806398603663252582077941860369541364495} a^{14} + \frac{8602329067043947937139608547630230695989117105745529532}{20739216643194418761279720732650516415588372073908272899} a^{13} - \frac{38567420646833398079683996624817889551743552409449846619}{103696083215972093806398603663252582077941860369541364495} a^{12} + \frac{11902107655307779208623925221404113221598828806184917822}{103696083215972093806398603663252582077941860369541364495} a^{11} - \frac{24581249857112502477318068953143365266986631892968351751}{103696083215972093806398603663252582077941860369541364495} a^{10} + \frac{44871761867246094743575272150577383880500183890332831478}{103696083215972093806398603663252582077941860369541364495} a^{9} + \frac{46030654575698611097058899452694069004359591150942054782}{103696083215972093806398603663252582077941860369541364495} a^{8} + \frac{17679816247506535271867020448779194109028245105359814551}{103696083215972093806398603663252582077941860369541364495} a^{7} - \frac{47783042931374862878152177661710392332608710615444403977}{103696083215972093806398603663252582077941860369541364495} a^{6} - \frac{20850816948547279225402855759678831780733078151397233732}{103696083215972093806398603663252582077941860369541364495} a^{5} + \frac{44520713379488475506254888642316926681887913765240682118}{103696083215972093806398603663252582077941860369541364495} a^{4} + \frac{7054170972027180157581622195104861726125887072628987199}{20739216643194418761279720732650516415588372073908272899} a^{3} - \frac{18191231336295955152095466370478752493706686416985968947}{103696083215972093806398603663252582077941860369541364495} a^{2} + \frac{9611355188113380802380757019118667596573081610616959862}{20739216643194418761279720732650516415588372073908272899} a - \frac{20431976893102298864896948708350091025432737087947719509}{103696083215972093806398603663252582077941860369541364495}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38524051.9355 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n790 are not computed |
| Character table for t20n790 is not computed |
Intermediate fields
| 5.5.24217.1, 10.6.17007429581.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.4.3.1 | $x^{4} - 29$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||