Normalized defining polynomial
\( x^{20} - 2 x^{19} + 5 x^{18} - 14 x^{17} - 32 x^{16} + 98 x^{15} - 488 x^{14} + 1903 x^{13} - 5075 x^{12} + 14339 x^{11} - 25470 x^{10} + 38847 x^{9} - 32979 x^{8} - 56746 x^{7} + 162512 x^{6} - 426217 x^{5} + 622948 x^{4} - 501824 x^{3} + 254803 x^{2} + 105177 x + 8293 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22076337374529449736276184040669=29^{7}\cdot 61^{6}\cdot 397^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{1471572566652859710806566814442215437715382743948296404937} a^{19} - \frac{6687205421437197080680793634373297507288814907275496032}{27765520125525654920878619140419159202177032904684837829} a^{18} + \frac{506644685375075184308520257548168118981186625198288977020}{1471572566652859710806566814442215437715382743948296404937} a^{17} + \frac{519023183294025040725069202231912296316633969466214431017}{1471572566652859710806566814442215437715382743948296404937} a^{16} - \frac{101857697530063728329444715019717443491355965280991847489}{1471572566652859710806566814442215437715382743948296404937} a^{15} - \frac{581413668750804262125617816284908101120087184976345222558}{1471572566652859710806566814442215437715382743948296404937} a^{14} - \frac{404293559007810094431911180789262450399061754959484086038}{1471572566652859710806566814442215437715382743948296404937} a^{13} + \frac{680014742392056017827364049741137958843381133480120326623}{1471572566652859710806566814442215437715382743948296404937} a^{12} + \frac{186384680230843859581349070296883569820059702789648274285}{1471572566652859710806566814442215437715382743948296404937} a^{11} - \frac{252721313719917946905488775718261135849361784954394581262}{1471572566652859710806566814442215437715382743948296404937} a^{10} + \frac{8369593700311038111059795907163219801875032218384815440}{1471572566652859710806566814442215437715382743948296404937} a^{9} + \frac{455581017022827580138864694354430435342629419056885000446}{1471572566652859710806566814442215437715382743948296404937} a^{8} - \frac{119734551180257025142692601090365432378575100393936790578}{1471572566652859710806566814442215437715382743948296404937} a^{7} + \frac{248220451838344916855585793553696525644266029571142633613}{1471572566652859710806566814442215437715382743948296404937} a^{6} - \frac{289859215752599813085864047263662784266076307493690148268}{1471572566652859710806566814442215437715382743948296404937} a^{5} + \frac{454597344352011162961912858032330430973872404456644234137}{1471572566652859710806566814442215437715382743948296404937} a^{4} + \frac{473764734347796474255364135125815345765189435882653544363}{1471572566652859710806566814442215437715382743948296404937} a^{3} - \frac{707405890842297767791349659342648361529873328639058357317}{1471572566652859710806566814442215437715382743948296404937} a^{2} + \frac{288435575054186662524918317262665561340020262129454395887}{1471572566652859710806566814442215437715382743948296404937} a + \frac{382990632378258504593855570651514815699513412751301594939}{1471572566652859710806566814442215437715382743948296404937}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20621995.3316 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n790 are not computed |
| Character table for t20n790 is not computed |
Intermediate fields
| 5.5.24217.1, 10.6.17007429581.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 29.8.4.2 | $x^{8} - 24389 x^{2} + 13438339$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 29.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.8.6.2 | $x^{8} + 183 x^{4} + 14884$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 397 | Data not computed | ||||||