Normalized defining polynomial
\( x^{20} - 7 x^{19} + 2 x^{18} + 85 x^{17} - 89 x^{16} - 485 x^{15} - 502 x^{14} + 7124 x^{13} - 3389 x^{12} - 37645 x^{11} + 1825 x^{10} + 232525 x^{9} + 94360 x^{8} - 986175 x^{7} - 1307700 x^{6} + 1275150 x^{5} + 3604650 x^{4} + 1354000 x^{3} - 3259625 x^{2} - 3537500 x - 968125 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21333423461884919389012763702392578125=5^{15}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{30} a^{12} - \frac{7}{30} a^{11} - \frac{13}{30} a^{10} - \frac{1}{2} a^{9} - \frac{7}{15} a^{8} - \frac{1}{2} a^{7} + \frac{4}{15} a^{6} + \frac{3}{10} a^{5} + \frac{11}{30} a^{4} - \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{30} a^{13} - \frac{1}{15} a^{11} + \frac{7}{15} a^{10} + \frac{1}{30} a^{9} + \frac{7}{30} a^{8} - \frac{7}{30} a^{7} + \frac{1}{6} a^{6} + \frac{7}{15} a^{5} - \frac{13}{30} a^{4} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{60} a^{14} - \frac{1}{60} a^{13} - \frac{1}{60} a^{12} - \frac{1}{10} a^{11} - \frac{11}{60} a^{10} - \frac{2}{5} a^{9} - \frac{13}{60} a^{8} - \frac{1}{20} a^{7} - \frac{7}{15} a^{6} + \frac{1}{5} a^{5} - \frac{1}{60} a^{4} - \frac{1}{6} a^{2} - \frac{1}{4}$, $\frac{1}{42600} a^{15} - \frac{43}{10650} a^{14} - \frac{29}{3550} a^{13} + \frac{1}{2840} a^{12} + \frac{5171}{42600} a^{11} + \frac{997}{8520} a^{10} + \frac{1011}{14200} a^{9} + \frac{263}{5325} a^{8} - \frac{10319}{42600} a^{7} + \frac{368}{1065} a^{6} - \frac{2719}{8520} a^{5} + \frac{1441}{8520} a^{4} - \frac{751}{2130} a^{3} - \frac{65}{213} a^{2} + \frac{77}{1704} a - \frac{625}{1704}$, $\frac{1}{1022400} a^{16} + \frac{1}{204480} a^{15} - \frac{299}{127800} a^{14} - \frac{7621}{1022400} a^{13} + \frac{3203}{511200} a^{12} - \frac{2107}{255600} a^{11} - \frac{44137}{170400} a^{10} + \frac{39061}{204480} a^{9} + \frac{298189}{1022400} a^{8} + \frac{444637}{1022400} a^{7} + \frac{9853}{22720} a^{6} - \frac{8137}{20448} a^{5} - \frac{4969}{68160} a^{4} + \frac{7939}{25560} a^{3} + \frac{18229}{40896} a^{2} - \frac{277}{1278} a + \frac{1555}{40896}$, $\frac{1}{2044800} a^{17} - \frac{17}{2044800} a^{15} + \frac{499}{2044800} a^{14} + \frac{9077}{681600} a^{13} - \frac{743}{340800} a^{12} + \frac{2309}{14400} a^{11} + \frac{79339}{408960} a^{10} + \frac{599}{21300} a^{9} - \frac{123817}{511200} a^{8} - \frac{14411}{51120} a^{7} + \frac{40393}{81792} a^{6} + \frac{41639}{408960} a^{5} + \frac{202079}{408960} a^{4} + \frac{25949}{81792} a^{3} + \frac{1559}{81792} a^{2} + \frac{26195}{81792} a + \frac{5377}{81792}$, $\frac{1}{20448000} a^{18} + \frac{1}{6816000} a^{17} + \frac{7}{20448000} a^{16} - \frac{1}{102240} a^{15} - \frac{457}{284000} a^{14} - \frac{953}{454400} a^{13} + \frac{31531}{2556000} a^{12} + \frac{4159049}{20448000} a^{11} - \frac{523411}{2272000} a^{10} + \frac{1753}{40896} a^{9} + \frac{330689}{1022400} a^{8} + \frac{249149}{4089600} a^{7} - \frac{110669}{2044800} a^{6} - \frac{18415}{40896} a^{5} - \frac{76937}{408960} a^{4} + \frac{4139}{81792} a^{3} + \frac{10781}{51120} a^{2} + \frac{35737}{81792} a + \frac{23749}{54528}$, $\frac{1}{90325637578105648617466240439616000} a^{19} - \frac{536119467430049117371795873}{45162818789052824308733120219808000} a^{18} - \frac{1901616796367705550499079}{301085458593685495391554134798720} a^{17} - \frac{3449011323442327732190884121}{30108545859368549539155413479872000} a^{16} + \frac{156948070022608961057373277739}{22581409394526412154366560109904000} a^{15} - \frac{288001875243216995977014328780769}{90325637578105648617466240439616000} a^{14} - \frac{636372012594087625294034498193347}{90325637578105648617466240439616000} a^{13} - \frac{49789200796225973726978790732343}{90325637578105648617466240439616000} a^{12} + \frac{34750675407723279736623099741227}{564535234863160303859164002747600} a^{11} + \frac{4422055621077281987444821575553599}{10036181953122849846385137826624000} a^{10} + \frac{525396604925158809595220096348677}{1129070469726320607718328005495200} a^{9} + \frac{4336223851600415989651166135023097}{18065127515621129723493248087923200} a^{8} - \frac{8149677562706932827357285377871179}{18065127515621129723493248087923200} a^{7} - \frac{991332788752440164018810209739579}{9032563757810564861746624043961600} a^{6} + \frac{56088168333616975615360798048093}{120434183437474198156621653919488} a^{5} - \frac{23968702771850621977676928294653}{301085458593685495391554134798720} a^{4} - \frac{230456656482631312584576715923299}{602170917187370990783108269597440} a^{3} - \frac{65906165739267015084229696452917}{1806512751562112972349324808792320} a^{2} + \frac{72065608165817269172243302265035}{240868366874948396313243307838976} a - \frac{32481164315744582797495503247471}{80289455624982798771081102612992}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46639726240.276184 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.120125.1, 5.1.115440125.1, 10.2.66632112300078125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $31$ | 31.10.9.8 | $x^{10} + 521017$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 31.10.9.8 | $x^{10} + 521017$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |