Properties

Label 20.4.21202828380...8125.1
Degree $20$
Signature $[4, 8]$
Discriminant $5^{10}\cdot 11\cdot 5471^{4}\cdot 22031$
Root discriminant $23.24$
Ramified primes $5, 11, 5471, 22031$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T876

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -14, 63, -141, 212, -199, 2, 468, -1192, 1984, -2558, 2684, -2332, 1682, -1000, 482, -183, 52, -10, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^19 + 52*x^18 - 183*x^17 + 482*x^16 - 1000*x^15 + 1682*x^14 - 2332*x^13 + 2684*x^12 - 2558*x^11 + 1984*x^10 - 1192*x^9 + 468*x^8 + 2*x^7 - 199*x^6 + 212*x^5 - 141*x^4 + 63*x^3 - 14*x^2 - x + 1)
 
gp: K = bnfinit(x^20 - 10*x^19 + 52*x^18 - 183*x^17 + 482*x^16 - 1000*x^15 + 1682*x^14 - 2332*x^13 + 2684*x^12 - 2558*x^11 + 1984*x^10 - 1192*x^9 + 468*x^8 + 2*x^7 - 199*x^6 + 212*x^5 - 141*x^4 + 63*x^3 - 14*x^2 - x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{19} + 52 x^{18} - 183 x^{17} + 482 x^{16} - 1000 x^{15} + 1682 x^{14} - 2332 x^{13} + 2684 x^{12} - 2558 x^{11} + 1984 x^{10} - 1192 x^{9} + 468 x^{8} + 2 x^{7} - 199 x^{6} + 212 x^{5} - 141 x^{4} + 63 x^{3} - 14 x^{2} - x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2120282838067894597861328125=5^{10}\cdot 11\cdot 5471^{4}\cdot 22031\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $23.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 11, 5471, 22031$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{1129} a^{18} - \frac{9}{1129} a^{17} + \frac{80}{1129} a^{16} - \frac{436}{1129} a^{15} - \frac{381}{1129} a^{14} + \frac{551}{1129} a^{13} + \frac{555}{1129} a^{12} + \frac{546}{1129} a^{11} + \frac{56}{1129} a^{10} - \frac{364}{1129} a^{9} + \frac{305}{1129} a^{8} + \frac{322}{1129} a^{7} - \frac{344}{1129} a^{6} + \frac{282}{1129} a^{5} - \frac{226}{1129} a^{4} + \frac{259}{1129} a^{3} - \frac{341}{1129} a^{2} + \frac{273}{1129} a + \frac{61}{1129}$, $\frac{1}{1129} a^{19} - \frac{1}{1129} a^{17} + \frac{284}{1129} a^{16} + \frac{211}{1129} a^{15} + \frac{509}{1129} a^{14} - \frac{131}{1129} a^{13} - \frac{104}{1129} a^{12} + \frac{454}{1129} a^{11} + \frac{140}{1129} a^{10} + \frac{416}{1129} a^{9} - \frac{320}{1129} a^{8} + \frac{296}{1129} a^{7} - \frac{556}{1129} a^{6} + \frac{54}{1129} a^{5} + \frac{483}{1129} a^{4} - \frac{268}{1129} a^{3} - \frac{538}{1129} a^{2} + \frac{260}{1129} a + \frac{549}{1129}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 404828.553737 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T876:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 204800
The 230 conjugacy class representatives for t20n876 are not computed
Character table for t20n876 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.6.93537003125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ R ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.5.0.1$x^{5} + x^{2} - x + 5$$1$$5$$0$$C_5$$[\ ]^{5}$
11.5.0.1$x^{5} + x^{2} - x + 5$$1$$5$$0$$C_5$$[\ ]^{5}$
5471Data not computed
22031Data not computed