Properties

Label 20.4.21001201182...1568.1
Degree $20$
Signature $[4, 8]$
Discriminant $2^{34}\cdot 17\cdot 223\cdot 647\cdot 2657^{4}$
Root discriminant $32.82$
Ramified primes $2, 17, 223, 647, 2657$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T1036

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, -8, 6, 60, -301, 798, -1371, 1522, -747, -972, 2996, -4408, 4652, -3844, 2562, -1388, 607, -210, 55, -10, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^19 + 55*x^18 - 210*x^17 + 607*x^16 - 1388*x^15 + 2562*x^14 - 3844*x^13 + 4652*x^12 - 4408*x^11 + 2996*x^10 - 972*x^9 - 747*x^8 + 1522*x^7 - 1371*x^6 + 798*x^5 - 301*x^4 + 60*x^3 + 6*x^2 - 8*x + 4)
 
gp: K = bnfinit(x^20 - 10*x^19 + 55*x^18 - 210*x^17 + 607*x^16 - 1388*x^15 + 2562*x^14 - 3844*x^13 + 4652*x^12 - 4408*x^11 + 2996*x^10 - 972*x^9 - 747*x^8 + 1522*x^7 - 1371*x^6 + 798*x^5 - 301*x^4 + 60*x^3 + 6*x^2 - 8*x + 4, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{19} + 55 x^{18} - 210 x^{17} + 607 x^{16} - 1388 x^{15} + 2562 x^{14} - 3844 x^{13} + 4652 x^{12} - 4408 x^{11} + 2996 x^{10} - 972 x^{9} - 747 x^{8} + 1522 x^{7} - 1371 x^{6} + 798 x^{5} - 301 x^{4} + 60 x^{3} + 6 x^{2} - 8 x + 4 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2100120118277354902599466221568=2^{34}\cdot 17\cdot 223\cdot 647\cdot 2657^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $32.82$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 17, 223, 647, 2657$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{13} + \frac{1}{5} a^{12} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{15} + \frac{2}{5} a^{13} + \frac{2}{5} a^{12} - \frac{1}{5} a^{11} + \frac{2}{5} a^{10} - \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{10} a^{16} - \frac{2}{5} a^{13} - \frac{3}{10} a^{12} + \frac{1}{5} a^{11} - \frac{1}{2} a^{10} + \frac{2}{5} a^{9} + \frac{1}{10} a^{8} + \frac{1}{5} a^{7} + \frac{3}{10} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{3} - \frac{1}{2} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{10} a^{17} - \frac{1}{10} a^{13} - \frac{2}{5} a^{12} - \frac{1}{2} a^{11} - \frac{3}{10} a^{9} + \frac{1}{5} a^{8} + \frac{1}{10} a^{7} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{2} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{10} a^{18} - \frac{1}{10} a^{14} - \frac{2}{5} a^{13} - \frac{1}{2} a^{12} - \frac{3}{10} a^{10} + \frac{1}{5} a^{9} + \frac{1}{10} a^{8} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{2} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{10} a^{19} - \frac{1}{10} a^{15} - \frac{3}{10} a^{13} + \frac{2}{5} a^{12} - \frac{3}{10} a^{11} - \frac{1}{5} a^{10} - \frac{3}{10} a^{9} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{3}{10} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 32967651.7114 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T1036:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 14745600
The 396 conjugacy class representatives for t20n1036 are not computed
Character table for t20n1036 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 10.6.925322313728.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ $20$ R ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.12.22.60$x^{12} - 84 x^{10} + 444 x^{8} + 32 x^{6} - 272 x^{4} - 320 x^{2} + 64$$6$$2$$22$$D_6$$[3]_{3}^{2}$
$17$17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.1.1$x^{2} - 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.6.0.1$x^{6} - x + 12$$1$$6$$0$$C_6$$[\ ]^{6}$
17.8.0.1$x^{8} + x^{2} - 3 x + 3$$1$$8$$0$$C_8$$[\ ]^{8}$
223Data not computed
647Data not computed
2657Data not computed