Normalized defining polynomial
\( x^{20} - 2 x^{19} - 3 x^{18} + 25 x^{16} - 14 x^{15} - 64 x^{14} + 118 x^{13} - 33 x^{12} - 136 x^{11} + 103 x^{10} + 26 x^{9} + 3 x^{8} - 16 x^{7} - 36 x^{6} + 38 x^{5} - 13 x^{4} - 10 x^{3} + 13 x^{2} - 2 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2099318241033027057614848=2^{24}\cdot 277^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 277$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{61} a^{18} - \frac{9}{61} a^{17} + \frac{2}{61} a^{16} + \frac{20}{61} a^{15} + \frac{13}{61} a^{14} + \frac{16}{61} a^{13} - \frac{15}{61} a^{12} + \frac{27}{61} a^{11} - \frac{23}{61} a^{10} - \frac{16}{61} a^{9} + \frac{24}{61} a^{8} - \frac{7}{61} a^{7} + \frac{2}{61} a^{6} + \frac{10}{61} a^{5} + \frac{22}{61} a^{4} - \frac{25}{61} a^{3} - \frac{16}{61} a^{2} + \frac{27}{61} a + \frac{20}{61}$, $\frac{1}{54838540821590429} a^{19} + \frac{4712767127403}{54838540821590429} a^{18} + \frac{17748082198179654}{54838540821590429} a^{17} - \frac{20444287372555805}{54838540821590429} a^{16} - \frac{22697317590816013}{54838540821590429} a^{15} - \frac{25488885148786057}{54838540821590429} a^{14} - \frac{5423488595748328}{54838540821590429} a^{13} - \frac{5016855304470153}{54838540821590429} a^{12} - \frac{20890492972475372}{54838540821590429} a^{11} + \frac{20634379746117572}{54838540821590429} a^{10} + \frac{1343782147697310}{54838540821590429} a^{9} - \frac{7426167256565263}{54838540821590429} a^{8} + \frac{8018066230857876}{54838540821590429} a^{7} - \frac{16251441044735706}{54838540821590429} a^{6} - \frac{10538461582986647}{54838540821590429} a^{5} + \frac{5469317585438432}{54838540821590429} a^{4} - \frac{24615910805676342}{54838540821590429} a^{3} + \frac{2705616313356928}{54838540821590429} a^{2} - \frac{23844668570542098}{54838540821590429} a + \frac{450350373706877}{54838540821590429}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22848.4989538 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 74 conjugacy class representatives for t20n674 are not computed |
| Character table for t20n674 is not computed |
Intermediate fields
| 10.2.5441006848.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 277 | Data not computed | ||||||