Normalized defining polynomial
\( x^{20} - 95 x^{18} + 4215 x^{16} - 4 x^{15} - 114580 x^{14} - 230 x^{13} + 2107275 x^{12} + 13110 x^{11} - 27381447 x^{10} - 247890 x^{9} + 254889125 x^{8} + 2101610 x^{7} - 1681061880 x^{6} - 2598998 x^{5} + 7517568315 x^{4} - 80130810 x^{3} - 20515534595 x^{2} + 398435200 x + 25759546399 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2097290517211312656250000000000000000=2^{16}\cdot 5^{22}\cdot 41^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{14} a^{18} - \frac{3}{14} a^{17} - \frac{1}{14} a^{16} + \frac{3}{14} a^{13} + \frac{1}{14} a^{12} + \frac{1}{14} a^{11} - \frac{1}{2} a^{9} + \frac{5}{14} a^{8} - \frac{1}{2} a^{7} - \frac{1}{14} a^{6} - \frac{2}{7} a^{5} - \frac{2}{7} a^{4} + \frac{5}{14} a^{3} - \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{300216513372847358194582469701626441721976618111129346738508496750049486} a^{19} + \frac{4727653650086257910727633058533326439335015826082597347688293953298101}{150108256686423679097291234850813220860988309055564673369254248375024743} a^{18} - \frac{29231790286535698224353537120240780413704361096972352385501315687004958}{150108256686423679097291234850813220860988309055564673369254248375024743} a^{17} - \frac{57514438831106807961540773503598719778351378144805856050975176451366007}{300216513372847358194582469701626441721976618111129346738508496750049486} a^{16} + \frac{2676974225784759669024831293233727996406203515383793531106613424586123}{42888073338978194027797495671660920245996659730161335248358356678578498} a^{15} + \frac{31114127076887870913201368177590234210185076891231935431909624238381632}{150108256686423679097291234850813220860988309055564673369254248375024743} a^{14} - \frac{11270799494134572449006329631770442846456573432410572718667236085965907}{100072171124282452731527489900542147240658872703709782246169498916683162} a^{13} + \frac{10035270481334098313423617838446050188984324898992517381249967668259610}{150108256686423679097291234850813220860988309055564673369254248375024743} a^{12} + \frac{10215386867509645366589758258535277307459440992036177216080982925292925}{150108256686423679097291234850813220860988309055564673369254248375024743} a^{11} - \frac{3506485091387944189544645839586680068155706176311479739415477484978959}{42888073338978194027797495671660920245996659730161335248358356678578498} a^{10} + \frac{23113766929037975250473025559635746766614660362984660261008622637542544}{150108256686423679097291234850813220860988309055564673369254248375024743} a^{9} - \frac{134099222181133632870504647276972803887453477857952067841778872718130217}{300216513372847358194582469701626441721976618111129346738508496750049486} a^{8} - \frac{9849455691043297603874545942130811173261543824235006852258486698502701}{33357390374760817577175829966847382413552957567903260748723166305561054} a^{7} - \frac{70353326423383658707223932803568702919707332279039114931594351856279977}{300216513372847358194582469701626441721976618111129346738508496750049486} a^{6} - \frac{21649286922298373954882173880077572725081890545863540737474517422454345}{150108256686423679097291234850813220860988309055564673369254248375024743} a^{5} - \frac{1448392970680578093596658236094605893000293015438927029736607422845}{877826062493705725715153420180194274040867304418506861808504376462133} a^{4} - \frac{15149875241839517834981226737911957773862852819148868219668372735112269}{100072171124282452731527489900542147240658872703709782246169498916683162} a^{3} + \frac{16260798291778614724813774051843709859807590221386050869568635740841403}{33357390374760817577175829966847382413552957567903260748723166305561054} a^{2} + \frac{141358503990615651605959784862272924251934919344803913242086181859161819}{300216513372847358194582469701626441721976618111129346738508496750049486} a + \frac{142105757506919875364127067496680063783099828859188398804169935061562297}{300216513372847358194582469701626441721976618111129346738508496750049486}$
Class group and class number
Not computed
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), \(\Q(\sqrt{205}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{41})\), 5.1.50000.1, 10.2.289640502500000000.1, 10.2.1448202512500000000.1, 10.2.12500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |
| $41$ | 41.10.5.1 | $x^{10} - 3362 x^{6} + 2825761 x^{2} - 5676953849$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 41.10.5.1 | $x^{10} - 3362 x^{6} + 2825761 x^{2} - 5676953849$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |