Normalized defining polynomial
\( x^{20} + 69 x^{18} + 1299 x^{16} + 7251 x^{14} - 1235 x^{12} - 115467 x^{10} - 282527 x^{8} - 50172 x^{6} + 489880 x^{4} + 490677 x^{2} + 133821 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(20741620697501495518586141242379606163456=2^{20}\cdot 3^{2}\cdot 401^{8}\cdot 14869^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $103.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 401, 14869$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{35931845073350704071364625223} a^{18} + \frac{5045575840878101705864210977}{11977281691116901357121541741} a^{16} + \frac{771640217692416218526939097}{11977281691116901357121541741} a^{14} - \frac{1261448376821497610084404309}{11977281691116901357121541741} a^{12} - \frac{3427510267882146075174599717}{35931845073350704071364625223} a^{10} + \frac{1639204602760346342089527800}{3992427230372300452373847247} a^{8} - \frac{7655319885746498916677404103}{35931845073350704071364625223} a^{6} - \frac{933088554603068511144550275}{3992427230372300452373847247} a^{4} - \frac{11349996167266012414498108886}{35931845073350704071364625223} a^{2} - \frac{491187944228060554134238478}{11977281691116901357121541741}$, $\frac{1}{35931845073350704071364625223} a^{19} + \frac{5045575840878101705864210977}{11977281691116901357121541741} a^{17} + \frac{771640217692416218526939097}{11977281691116901357121541741} a^{15} - \frac{1261448376821497610084404309}{11977281691116901357121541741} a^{13} - \frac{3427510267882146075174599717}{35931845073350704071364625223} a^{11} + \frac{1639204602760346342089527800}{3992427230372300452373847247} a^{9} - \frac{7655319885746498916677404103}{35931845073350704071364625223} a^{7} - \frac{933088554603068511144550275}{3992427230372300452373847247} a^{5} - \frac{11349996167266012414498108886}{35931845073350704071364625223} a^{3} - \frac{491187944228060554134238478}{11977281691116901357121541741} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 753715998638 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 208 conjugacy class representatives for t20n418 are not computed |
| Character table for t20n418 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.384467162045269.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | $20$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | $20$ | $20$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 401 | Data not computed | ||||||
| 14869 | Data not computed | ||||||