Normalized defining polynomial
\( x^{20} - 2 x^{19} - 9 x^{18} - 4 x^{17} + 8 x^{16} + 311 x^{15} - 1013 x^{14} - 2943 x^{13} + 2836 x^{12} + 5359 x^{11} - 2238 x^{10} - 73783 x^{9} - 72009 x^{8} + 57368 x^{7} + 184507 x^{6} + 197227 x^{5} - 131553 x^{4} - 277651 x^{3} + 17648 x^{2} + 98838 x + 29241 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(202496984818189934420549080247241853=13^{13}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{57} a^{18} - \frac{7}{57} a^{17} + \frac{7}{57} a^{16} - \frac{20}{57} a^{15} - \frac{2}{19} a^{14} - \frac{20}{57} a^{13} - \frac{1}{57} a^{12} + \frac{26}{57} a^{11} + \frac{8}{57} a^{10} - \frac{1}{57} a^{9} - \frac{10}{57} a^{8} - \frac{13}{57} a^{7} + \frac{3}{19} a^{6} - \frac{1}{3} a^{5} - \frac{2}{57} a^{4} - \frac{2}{57} a^{3} - \frac{2}{19} a^{2} + \frac{26}{57} a$, $\frac{1}{16085334451646366451883175747568407841627126225377751663} a^{19} + \frac{53902480711091884909077202854538409733917016238571734}{16085334451646366451883175747568407841627126225377751663} a^{18} + \frac{674251280153888331832161969582287736586639063167184459}{5361778150548788817294391915856135947209042075125917221} a^{17} + \frac{526143589380223196302290724068743954148288643319514719}{16085334451646366451883175747568407841627126225377751663} a^{16} + \frac{2138742807262999415911755601962062364047374580284594187}{16085334451646366451883175747568407841627126225377751663} a^{15} - \frac{4785621859029498514564168013247588412020977986099807660}{16085334451646366451883175747568407841627126225377751663} a^{14} + \frac{2400551161724620768892000347341364207446129983770795465}{16085334451646366451883175747568407841627126225377751663} a^{13} - \frac{989282642214845476370589207327710934621447468063040901}{5361778150548788817294391915856135947209042075125917221} a^{12} - \frac{1052220847549605440388877793860596206336340515125873778}{16085334451646366451883175747568407841627126225377751663} a^{11} + \frac{3828223367048535617358096508937236298233044738244205959}{16085334451646366451883175747568407841627126225377751663} a^{10} + \frac{173434874713738098367673767930554941078062730298157058}{5361778150548788817294391915856135947209042075125917221} a^{9} - \frac{161813746166226152465946545740889454438341940643856143}{16085334451646366451883175747568407841627126225377751663} a^{8} + \frac{2191878311640464562326868465579938482213452160936311859}{5361778150548788817294391915856135947209042075125917221} a^{7} - \frac{2566849053009169256129729542838109711920728226338636873}{16085334451646366451883175747568407841627126225377751663} a^{6} + \frac{5652617905012657771437461443828043010348011215995774745}{16085334451646366451883175747568407841627126225377751663} a^{5} + \frac{4250242576508047303489070884925108989538087105636374378}{16085334451646366451883175747568407841627126225377751663} a^{4} - \frac{843708360198508970035265748105400729443409064711378467}{5361778150548788817294391915856135947209042075125917221} a^{3} + \frac{7028928925795169117728295300645730222230392466020182749}{16085334451646366451883175747568407841627126225377751663} a^{2} - \frac{6688687682711430689561793051583461853005121285144884130}{16085334451646366451883175747568407841627126225377751663} a - \frac{35114789280484943327681819861945270217384842630368142}{94066283342961207320954244137826946442263896054840653}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3377356877.65 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 100 conjugacy class representatives for t20n426 are not computed |
| Character table for t20n426 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.5.160801.1, 10.10.9600508843720093.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20$ | $20$ | $20$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 401 | Data not computed | ||||||