Properties

Label 20.4.20245771322...4048.3
Degree $20$
Signature $[4, 8]$
Discriminant $2^{30}\cdot 3^{18}\cdot 13^{5}\cdot 107^{4}$
Root discriminant $36.76$
Ramified primes $2, 3, 13, 107$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T1023

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-263, 2012, -6124, 9300, -5568, -5460, 15058, -15790, 9758, -2364, -2772, 3600, -1827, 234, 432, -500, 314, -130, 38, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 8*x^19 + 38*x^18 - 130*x^17 + 314*x^16 - 500*x^15 + 432*x^14 + 234*x^13 - 1827*x^12 + 3600*x^11 - 2772*x^10 - 2364*x^9 + 9758*x^8 - 15790*x^7 + 15058*x^6 - 5460*x^5 - 5568*x^4 + 9300*x^3 - 6124*x^2 + 2012*x - 263)
 
gp: K = bnfinit(x^20 - 8*x^19 + 38*x^18 - 130*x^17 + 314*x^16 - 500*x^15 + 432*x^14 + 234*x^13 - 1827*x^12 + 3600*x^11 - 2772*x^10 - 2364*x^9 + 9758*x^8 - 15790*x^7 + 15058*x^6 - 5460*x^5 - 5568*x^4 + 9300*x^3 - 6124*x^2 + 2012*x - 263, 1)
 

Normalized defining polynomial

\( x^{20} - 8 x^{19} + 38 x^{18} - 130 x^{17} + 314 x^{16} - 500 x^{15} + 432 x^{14} + 234 x^{13} - 1827 x^{12} + 3600 x^{11} - 2772 x^{10} - 2364 x^{9} + 9758 x^{8} - 15790 x^{7} + 15058 x^{6} - 5460 x^{5} - 5568 x^{4} + 9300 x^{3} - 6124 x^{2} + 2012 x - 263 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(20245771322351194925844343554048=2^{30}\cdot 3^{18}\cdot 13^{5}\cdot 107^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $36.76$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 13, 107$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{18} - \frac{1}{3} a^{13} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{148895077907427747542524932812229} a^{19} - \frac{2446680804298677312404929099919}{148895077907427747542524932812229} a^{18} + \frac{1029069153024973068740207857511}{148895077907427747542524932812229} a^{17} + \frac{446213073197780299667399319267}{49631692635809249180841644270743} a^{16} + \frac{5639499214088870955924590004014}{148895077907427747542524932812229} a^{15} - \frac{3123913254917369521916196833156}{49631692635809249180841644270743} a^{14} + \frac{23368758052332774921184849777906}{148895077907427747542524932812229} a^{13} + \frac{3853550640644180995856974521967}{148895077907427747542524932812229} a^{12} - \frac{68434240200651374153164436138723}{148895077907427747542524932812229} a^{11} - \frac{67378982553500307630688222760011}{148895077907427747542524932812229} a^{10} - \frac{14691708262312248958337356005997}{49631692635809249180841644270743} a^{9} + \frac{23070542232072047434291597944145}{148895077907427747542524932812229} a^{8} + \frac{11526383062907582459242901129204}{49631692635809249180841644270743} a^{7} + \frac{40338348073108996003737406989313}{148895077907427747542524932812229} a^{6} + \frac{4051420317057252686127723039679}{148895077907427747542524932812229} a^{5} - \frac{71305080426094642365052615505813}{148895077907427747542524932812229} a^{4} - \frac{66386405132668401190106320607392}{148895077907427747542524932812229} a^{3} + \frac{11338759020683844928426670710306}{49631692635809249180841644270743} a^{2} + \frac{26313502951974257628505586211877}{148895077907427747542524932812229} a - \frac{2373251292240284037751764126599}{148895077907427747542524932812229}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 50926614.0697 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T1023:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 7372800
The 324 conjugacy class representatives for t20n1023 are not computed
Character table for t20n1023 is not computed

Intermediate fields

\(\Q(\sqrt{3}) \), 10.6.38998285028352.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.6.2$x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
3.12.12.28$x^{12} + 12 x^{11} - 3 x^{10} + 3 x^{9} + 3 x^{8} + 6 x^{7} + 12 x^{6} + 9 x^{5} + 9 x^{4} + 9 x + 9$$6$$2$$12$12T34$[5/4, 5/4]_{4}^{2}$
$13$13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.3.0.1$x^{3} - 2 x + 6$$1$$3$$0$$C_3$$[\ ]^{3}$
13.3.0.1$x^{3} - 2 x + 6$$1$$3$$0$$C_3$$[\ ]^{3}$
13.6.4.2$x^{6} - 13 x^{3} + 338$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
$107$107.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
107.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
107.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
107.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
107.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
107.6.4.1$x^{6} + 1498 x^{3} + 1431125$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$