Normalized defining polynomial
\( x^{20} - 10 x^{19} + 48 x^{18} - 126 x^{17} + 129 x^{16} + 324 x^{15} - 1720 x^{14} + 4120 x^{13} - 6993 x^{12} + 9562 x^{11} - 10414 x^{10} + 7344 x^{9} - 849 x^{8} - 4512 x^{7} + 6732 x^{6} - 7270 x^{5} + 3280 x^{4} + 4644 x^{3} - 5310 x^{2} + 876 x - 183 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(20245771322351194925844343554048=2^{30}\cdot 3^{18}\cdot 13^{5}\cdot 107^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{10} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{11} + \frac{1}{3} a^{5}$, $\frac{1}{39} a^{18} + \frac{5}{39} a^{16} + \frac{2}{39} a^{15} - \frac{1}{39} a^{14} - \frac{19}{39} a^{13} + \frac{6}{13} a^{12} + \frac{8}{39} a^{11} - \frac{17}{39} a^{10} + \frac{1}{3} a^{9} - \frac{11}{39} a^{8} + \frac{19}{39} a^{7} - \frac{4}{39} a^{6} + \frac{1}{3} a^{5} - \frac{4}{13} a^{4} - \frac{2}{13} a^{3} + \frac{6}{13} a^{2} + \frac{4}{13} a + \frac{1}{13}$, $\frac{1}{925769085757417087988603866857} a^{19} - \frac{89305062190420373317936298}{21529513622265513674153578299} a^{18} - \frac{113132259951714976292924398387}{925769085757417087988603866857} a^{17} - \frac{15737924656586593090371122252}{925769085757417087988603866857} a^{16} - \frac{72455907552627793516755401797}{925769085757417087988603866857} a^{15} - \frac{94810811208192934189378944272}{925769085757417087988603866857} a^{14} + \frac{374679157431632217184573491880}{925769085757417087988603866857} a^{13} + \frac{134616802368740794500689629409}{308589695252472362662867955619} a^{12} - \frac{34192096466682891437781682553}{102863231750824120887622651873} a^{11} + \frac{319949756152070361620970981358}{925769085757417087988603866857} a^{10} - \frac{159257144668397067768490937414}{925769085757417087988603866857} a^{9} - \frac{180784166094928713000315739513}{925769085757417087988603866857} a^{8} + \frac{305252423096159882427249486823}{925769085757417087988603866857} a^{7} + \frac{44759385331209580351223631278}{925769085757417087988603866857} a^{6} - \frac{251455447852714313672734797617}{925769085757417087988603866857} a^{5} - \frac{255604299019098148544872735175}{925769085757417087988603866857} a^{4} - \frac{124040510364972149744286848836}{308589695252472362662867955619} a^{3} + \frac{58616125979190490754743264867}{308589695252472362662867955619} a^{2} - \frac{103805637071022168355429084213}{308589695252472362662867955619} a - \frac{55217813139954273751558487701}{308589695252472362662867955619}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 131920417.361 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 324 conjugacy class representatives for t20n1023 are not computed |
| Character table for t20n1023 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 10.6.38998285028352.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.12.12.28 | $x^{12} + 12 x^{11} - 3 x^{10} + 3 x^{9} + 3 x^{8} + 6 x^{7} + 12 x^{6} + 9 x^{5} + 9 x^{4} + 9 x + 9$ | $6$ | $2$ | $12$ | 12T34 | $[5/4, 5/4]_{4}^{2}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.6.4.2 | $x^{6} - 13 x^{3} + 338$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 107 | Data not computed | ||||||