Normalized defining polynomial
\( x^{20} - 4 x^{19} + 23 x^{18} - 38 x^{17} + 157 x^{16} + 126 x^{15} - 239 x^{14} + 5543 x^{13} - 9767 x^{12} + 48731 x^{11} - 52647 x^{10} + 197277 x^{9} + 60753 x^{8} + 239947 x^{7} + 1556367 x^{6} - 309932 x^{5} + 5752551 x^{4} + 1073140 x^{3} + 5045800 x^{2} + 3532675 x - 2727775 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1969799822613689762148183291015625=5^{10}\cdot 61^{6}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{13} a^{16} + \frac{3}{13} a^{15} - \frac{6}{13} a^{14} - \frac{2}{13} a^{13} - \frac{5}{13} a^{12} + \frac{3}{13} a^{11} - \frac{2}{13} a^{10} + \frac{3}{13} a^{9} - \frac{4}{13} a^{7} - \frac{2}{13} a^{6} + \frac{3}{13} a^{5} + \frac{6}{13} a^{4} + \frac{5}{13} a^{3} - \frac{1}{13} a^{2} + \frac{4}{13} a + \frac{2}{13}$, $\frac{1}{13} a^{17} - \frac{2}{13} a^{15} + \frac{3}{13} a^{14} + \frac{1}{13} a^{13} + \frac{5}{13} a^{12} + \frac{2}{13} a^{11} - \frac{4}{13} a^{10} + \frac{4}{13} a^{9} - \frac{4}{13} a^{8} - \frac{3}{13} a^{7} - \frac{4}{13} a^{6} - \frac{3}{13} a^{5} - \frac{3}{13} a^{3} - \frac{6}{13} a^{2} + \frac{3}{13} a - \frac{6}{13}$, $\frac{1}{2023757255} a^{18} + \frac{34688361}{2023757255} a^{17} + \frac{4622583}{2023757255} a^{16} - \frac{875663403}{2023757255} a^{15} - \frac{952657138}{2023757255} a^{14} - \frac{57288609}{2023757255} a^{13} - \frac{984295349}{2023757255} a^{12} + \frac{64292786}{155673635} a^{11} + \frac{242075633}{2023757255} a^{10} + \frac{546141946}{2023757255} a^{9} + \frac{611856803}{2023757255} a^{8} - \frac{694960663}{2023757255} a^{7} + \frac{77571781}{155673635} a^{6} + \frac{2873229}{155673635} a^{5} + \frac{900648717}{2023757255} a^{4} - \frac{424063127}{2023757255} a^{3} + \frac{12439897}{155673635} a^{2} - \frac{87511968}{404751451} a + \frac{13138271}{404751451}$, $\frac{1}{14714826784147416423760653296961811890967066992350836855} a^{19} - \frac{115262748582076058677816426442371493422280717}{1131909752626724340289281022843216299305158999411602835} a^{18} - \frac{7499398341869206781238055367598025674691004606981464}{14714826784147416423760653296961811890967066992350836855} a^{17} + \frac{297447916727937862763591966583505317381711318514737416}{14714826784147416423760653296961811890967066992350836855} a^{16} + \frac{4640986778210850766421978698013137317082396029060431083}{14714826784147416423760653296961811890967066992350836855} a^{15} + \frac{540875189551073232069181603850816377067822851966716497}{14714826784147416423760653296961811890967066992350836855} a^{14} + \frac{1683880241195849454561607097165668902881898495334317039}{14714826784147416423760653296961811890967066992350836855} a^{13} + \frac{4869181410218843887337549585006701222374600920570841031}{14714826784147416423760653296961811890967066992350836855} a^{12} - \frac{6867493399615245219537766950379305322469992952133811563}{14714826784147416423760653296961811890967066992350836855} a^{11} + \frac{1070150839556452567963386332726631277327112598920801415}{2942965356829483284752130659392362378193413398470167371} a^{10} + \frac{3440202939579623804934410260893630798850972351690880171}{14714826784147416423760653296961811890967066992350836855} a^{9} + \frac{6495422780820441537294637460054031531187501598339489486}{14714826784147416423760653296961811890967066992350836855} a^{8} + \frac{5012220595751120901879782875755367248909321167057820889}{14714826784147416423760653296961811890967066992350836855} a^{7} - \frac{134636210114075083969066472248591532834926138900966498}{1131909752626724340289281022843216299305158999411602835} a^{6} - \frac{4313720780998507984575385378016174982884488383160607312}{14714826784147416423760653296961811890967066992350836855} a^{5} - \frac{3663685761802482589042162153497405894674388787885274516}{14714826784147416423760653296961811890967066992350836855} a^{4} - \frac{388971699864580116246593784501563987864894263813484291}{2942965356829483284752130659392362378193413398470167371} a^{3} - \frac{1732596499164686651873015904919849901430065559703784107}{14714826784147416423760653296961811890967066992350836855} a^{2} + \frac{1368346130573733692814369039142977729483719469107711205}{2942965356829483284752130659392362378193413398470167371} a + \frac{20468530078717797153133786252207718870144307144434895}{2942965356829483284752130659392362378193413398470167371}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 390465777.545 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n288 |
| Character table for t20n288 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.24217.1, 10.10.1832697153125.1, 10.2.71011883131565.1, 10.2.8876485391445625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||