Normalized defining polynomial
\( x^{20} - 10 x^{19} + 43 x^{18} - 74 x^{17} - 105 x^{16} + 1038 x^{15} - 3587 x^{14} + 9035 x^{13} - 17355 x^{12} + 24617 x^{11} - 15587 x^{10} - 28001 x^{9} + 145716 x^{8} - 311207 x^{7} + 514366 x^{6} - 473357 x^{5} + 360299 x^{4} + 378181 x^{3} - 556830 x^{2} + 950849 x - 397561 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1969799822613689762148183291015625=5^{10}\cdot 61^{6}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{13} + \frac{1}{9} a^{12} - \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{2}{9} a^{8} - \frac{1}{3} a^{7} + \frac{2}{9} a^{6} - \frac{1}{9} a^{5} - \frac{1}{3} a^{4} + \frac{4}{9} a^{3} + \frac{1}{9} a - \frac{2}{9}$, $\frac{1}{9} a^{15} - \frac{2}{9} a^{11} - \frac{1}{9} a^{9} + \frac{4}{9} a^{8} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{4}{9} a^{5} + \frac{1}{9} a^{4} + \frac{4}{9} a^{3} + \frac{1}{9} a^{2} - \frac{1}{9} a - \frac{2}{9}$, $\frac{1}{351} a^{16} - \frac{14}{351} a^{15} + \frac{16}{351} a^{14} + \frac{47}{351} a^{13} + \frac{41}{351} a^{12} + \frac{1}{9} a^{11} + \frac{28}{351} a^{10} + \frac{34}{351} a^{9} + \frac{145}{351} a^{8} + \frac{46}{117} a^{7} - \frac{157}{351} a^{6} - \frac{58}{351} a^{5} - \frac{22}{351} a^{4} + \frac{4}{39} a^{3} + \frac{40}{117} a^{2} + \frac{109}{351} a - \frac{67}{351}$, $\frac{1}{351} a^{17} + \frac{5}{117} a^{15} - \frac{2}{351} a^{14} + \frac{4}{39} a^{13} - \frac{11}{351} a^{12} - \frac{11}{351} a^{11} + \frac{38}{117} a^{10} + \frac{4}{39} a^{9} + \frac{101}{351} a^{8} + \frac{59}{351} a^{7} + \frac{28}{117} a^{6} - \frac{2}{13} a^{5} + \frac{40}{351} a^{4} - \frac{4}{9} a^{3} - \frac{122}{351} a^{2} + \frac{172}{351} a - \frac{80}{351}$, $\frac{1}{1053} a^{18} - \frac{1}{1053} a^{16} - \frac{4}{351} a^{15} + \frac{53}{1053} a^{14} - \frac{100}{1053} a^{13} - \frac{160}{1053} a^{12} + \frac{17}{117} a^{11} + \frac{17}{1053} a^{10} + \frac{64}{1053} a^{9} + \frac{118}{1053} a^{8} - \frac{5}{39} a^{7} + \frac{313}{1053} a^{6} - \frac{241}{1053} a^{5} - \frac{38}{1053} a^{4} - \frac{425}{1053} a^{3} - \frac{461}{1053} a^{2} - \frac{49}{351} a + \frac{409}{1053}$, $\frac{1}{1259356291433877539382090692530105600584940611} a^{19} - \frac{428855339421153537580404930980208157106966}{1259356291433877539382090692530105600584940611} a^{18} + \frac{845230326575514870921217868272802358925595}{1259356291433877539382090692530105600584940611} a^{17} - \frac{1395674142166008682574830235129928980851879}{1259356291433877539382090692530105600584940611} a^{16} - \frac{42002722004595618301120923201911200881534637}{1259356291433877539382090692530105600584940611} a^{15} - \frac{10270038255138863226139015757312586607494473}{1259356291433877539382090692530105600584940611} a^{14} + \frac{94930179174471414688713384296703040673790706}{1259356291433877539382090692530105600584940611} a^{13} - \frac{89251030961457012943705941245748574963015558}{1259356291433877539382090692530105600584940611} a^{12} + \frac{114524906871955799056031732958631290069365603}{1259356291433877539382090692530105600584940611} a^{11} + \frac{4647068964720560225042342519600747088057099}{15547608536220710362741860401606241982530131} a^{10} - \frac{335627958608522785640386525029384948882885007}{1259356291433877539382090692530105600584940611} a^{9} + \frac{111732248581123879315920865893654255744817348}{1259356291433877539382090692530105600584940611} a^{8} + \frac{454153954157629501872143050287825842749474582}{1259356291433877539382090692530105600584940611} a^{7} + \frac{6505821253580800776963527870702958758483671}{15547608536220710362741860401606241982530131} a^{6} - \frac{1142493201306452934100815171285375988460581}{46642825608662131088225581204818725947590393} a^{5} + \frac{560901256343519715142110844082824964760619127}{1259356291433877539382090692530105600584940611} a^{4} + \frac{532065092629347537015330919926610652565999113}{1259356291433877539382090692530105600584940611} a^{3} - \frac{620246795144272866114337154012038530538044278}{1259356291433877539382090692530105600584940611} a^{2} - \frac{441014144803785279069453597034578655410723437}{1259356291433877539382090692530105600584940611} a - \frac{255613701294606541522523502930643193717045018}{1259356291433877539382090692530105600584940611}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 229445959.72 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n288 |
| Character table for t20n288 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.24217.1, 10.10.1832697153125.1, 10.2.44382426957228125.1, 10.2.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 397 | Data not computed | ||||||