Properties

Label 20.4.19481352064...8125.1
Degree $20$
Signature $[4, 8]$
Discriminant $3^{8}\cdot 5^{11}\cdot 239^{10}$
Root discriminant $58.14$
Ramified primes $3, 5, 239$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 20T426

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-22131, -27090, 241614, -582288, 1032859, -1311498, 941416, -169134, -297764, 301534, -134419, 14907, 15540, -5664, -948, 378, 258, -104, 12, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 + 12*x^18 - 104*x^17 + 258*x^16 + 378*x^15 - 948*x^14 - 5664*x^13 + 15540*x^12 + 14907*x^11 - 134419*x^10 + 301534*x^9 - 297764*x^8 - 169134*x^7 + 941416*x^6 - 1311498*x^5 + 1032859*x^4 - 582288*x^3 + 241614*x^2 - 27090*x - 22131)
 
gp: K = bnfinit(x^20 - 4*x^19 + 12*x^18 - 104*x^17 + 258*x^16 + 378*x^15 - 948*x^14 - 5664*x^13 + 15540*x^12 + 14907*x^11 - 134419*x^10 + 301534*x^9 - 297764*x^8 - 169134*x^7 + 941416*x^6 - 1311498*x^5 + 1032859*x^4 - 582288*x^3 + 241614*x^2 - 27090*x - 22131, 1)
 

Normalized defining polynomial

\( x^{20} - 4 x^{19} + 12 x^{18} - 104 x^{17} + 258 x^{16} + 378 x^{15} - 948 x^{14} - 5664 x^{13} + 15540 x^{12} + 14907 x^{11} - 134419 x^{10} + 301534 x^{9} - 297764 x^{8} - 169134 x^{7} + 941416 x^{6} - 1311498 x^{5} + 1032859 x^{4} - 582288 x^{3} + 241614 x^{2} - 27090 x - 22131 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(194813520645626483248608015673828125=3^{8}\cdot 5^{11}\cdot 239^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $58.14$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 239$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{15} a^{18} - \frac{7}{15} a^{17} - \frac{1}{5} a^{16} + \frac{7}{15} a^{15} + \frac{2}{5} a^{13} - \frac{2}{5} a^{12} + \frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{3} a^{8} + \frac{1}{15} a^{7} - \frac{2}{15} a^{6} + \frac{2}{5} a^{5} - \frac{1}{3} a^{4} + \frac{2}{5} a^{3} + \frac{1}{15} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{1958353661342093027374925436777814284138575706886930965} a^{19} - \frac{57889708846272463758734681350313341048574427296840657}{1958353661342093027374925436777814284138575706886930965} a^{18} - \frac{731023274504910096823823659534971059796313532045211923}{1958353661342093027374925436777814284138575706886930965} a^{17} - \frac{591346466025388754067125001886011086923002109590238043}{1958353661342093027374925436777814284138575706886930965} a^{16} - \frac{62871229080709497438682701001146970423184502659332880}{391670732268418605474985087355562856827715141377386193} a^{15} + \frac{222837834713513976202560079817158104703790273805056392}{652784553780697675791641812259271428046191902295643655} a^{14} - \frac{156290712414575087595027581249582948203087540334011222}{652784553780697675791641812259271428046191902295643655} a^{13} + \frac{69476975331553257160504253186928202712820006910471451}{652784553780697675791641812259271428046191902295643655} a^{12} - \frac{35013968919795959339913937896027027778669254898176041}{652784553780697675791641812259271428046191902295643655} a^{11} + \frac{169074620305449520392287646347657420713893879918691406}{652784553780697675791641812259271428046191902295643655} a^{10} + \frac{114173008971910523540182303551303254009745033509955616}{391670732268418605474985087355562856827715141377386193} a^{9} + \frac{82294396083990383620322402314401000750029555403715646}{1958353661342093027374925436777814284138575706886930965} a^{8} + \frac{125953314275017380249603779292686970946319227518086161}{652784553780697675791641812259271428046191902295643655} a^{7} - \frac{90020487556946189518010995546439359151851932933406129}{1958353661342093027374925436777814284138575706886930965} a^{6} - \frac{173461650954092658481875325340496056393448220712426971}{391670732268418605474985087355562856827715141377386193} a^{5} + \frac{157350117242565614097699986315262685265642499227020106}{1958353661342093027374925436777814284138575706886930965} a^{4} + \frac{49960770934530097330623637651134265247188129788484876}{1958353661342093027374925436777814284138575706886930965} a^{3} - \frac{437090964126698866746048532053434469743783288227611937}{1958353661342093027374925436777814284138575706886930965} a^{2} + \frac{183538020874732806665434240573927185792836316714276723}{652784553780697675791641812259271428046191902295643655} a - \frac{25249856176336311960816546948326197575364890711926183}{130556910756139535158328362451854285609238380459128731}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3139974169.35 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T426:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 10240
The 100 conjugacy class representatives for t20n426 are not computed
Character table for t20n426 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ R R $20$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ $20$ $20$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ $20$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
239Data not computed