Normalized defining polynomial
\( x^{20} - 16 x^{18} - 74 x^{16} + 243 x^{14} + 6324 x^{12} + 46739 x^{10} + 205833 x^{8} + 613178 x^{6} + 1220345 x^{4} + 1372716 x^{2} + 719104 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19331679745558008227514653210116096=2^{16}\cdot 83^{6}\cdot 983^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{854031721967403399889105576} a^{18} - \frac{1}{4} a^{17} - \frac{53205100400833051542761895}{213507930491850849972276394} a^{16} - \frac{170610936486064614690675109}{427015860983701699944552788} a^{14} - \frac{1}{2} a^{13} - \frac{283017491571596362323735389}{854031721967403399889105576} a^{12} + \frac{1}{4} a^{11} - \frac{45156824992240532589879508}{106753965245925424986138197} a^{10} - \frac{115793602981375678097584317}{854031721967403399889105576} a^{8} + \frac{1}{4} a^{7} - \frac{392419278733828743433561579}{854031721967403399889105576} a^{6} - \frac{1}{4} a^{5} + \frac{205774815276554026116123443}{427015860983701699944552788} a^{4} - \frac{1}{2} a^{3} + \frac{330323962668491638435431449}{854031721967403399889105576} a^{2} - \frac{1}{4} a - \frac{8870694151552038347402599}{106753965245925424986138197}$, $\frac{1}{362109450114179041552980764224} a^{19} + \frac{1954953473843775552677444133}{11315920316068095048530648882} a^{17} - \frac{1}{2} a^{16} + \frac{54487419269427752978212081755}{181054725057089520776490382112} a^{15} + \frac{134653994579278140820154945619}{362109450114179041552980764224} a^{13} + \frac{22648280947397634456867676945}{90527362528544760388245191056} a^{11} - \frac{1}{2} a^{10} + \frac{172398614234434111099501742035}{362109450114179041552980764224} a^{9} - \frac{172479811255165613821088335143}{362109450114179041552980764224} a^{7} - \frac{1}{2} a^{6} - \frac{14099256527677452922026394955}{181054725057089520776490382112} a^{5} - \frac{1}{2} a^{4} - \frac{33830944916027644357128791591}{362109450114179041552980764224} a^{3} + \frac{42790598675312991342746611799}{90527362528544760388245191056} a - \frac{1}{2}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 483623100.308 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 63 conjugacy class representatives for t20n555 are not computed |
| Character table for t20n555 is not computed |
Intermediate fields
| 5.5.81589.1, 10.2.543118793139469.1, 10.10.1704131819776.1, 10.2.139038411043704064.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 83 | Data not computed | ||||||
| 983 | Data not computed | ||||||