Normalized defining polynomial
\( x^{20} - 5 x^{19} - 15 x^{18} + 280 x^{17} - 945 x^{16} + 198 x^{15} + 14180 x^{14} - 97645 x^{13} + 351970 x^{12} - 255555 x^{11} - 3611196 x^{10} + 14891330 x^{9} - 27752675 x^{8} - 29312330 x^{7} + 303998195 x^{6} - 85381863 x^{5} - 1286617875 x^{4} + 298330310 x^{3} + 2109281000 x^{2} - 1225863600 x + 2214298096 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(192907225404162891209125518798828125=5^{31}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} + \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{5064} a^{18} + \frac{223}{2532} a^{17} + \frac{97}{1688} a^{16} - \frac{73}{1688} a^{15} + \frac{125}{844} a^{14} - \frac{21}{422} a^{13} + \frac{61}{633} a^{12} - \frac{2093}{5064} a^{11} + \frac{1783}{5064} a^{10} + \frac{1105}{2532} a^{9} - \frac{159}{844} a^{8} + \frac{373}{1266} a^{7} + \frac{2345}{5064} a^{6} - \frac{1355}{5064} a^{5} + \frac{121}{2532} a^{4} + \frac{449}{1688} a^{3} - \frac{761}{2532} a^{2} - \frac{31}{633} a - \frac{224}{633}$, $\frac{1}{73990315546306241854360084687820472502673284498006655392733058226890839787132939784729224} a^{19} - \frac{7220674277029681821961425819346536713908510494242924101437303550022736736060290948721}{73990315546306241854360084687820472502673284498006655392733058226890839787132939784729224} a^{18} + \frac{1864983256134728941946782841297622524852468311106296623996073806120820406103038472371147}{24663438515435413951453361562606824167557761499335551797577686075630279929044313261576408} a^{17} + \frac{503480147100058881685179136559314868134877186480866539437821005584957727029924915862485}{6165859628858853487863340390651706041889440374833887949394421518907569982261078315394102} a^{16} - \frac{957329631189016051138090064600173077702052663556494315464541339890176906985945576257783}{24663438515435413951453361562606824167557761499335551797577686075630279929044313261576408} a^{15} - \frac{52505361760972127095496729752056944019278481003259685701407410839344070252079284098437}{649037855669352998722456883226495372830467407877251363094149633569217892869587191094116} a^{14} + \frac{2662956288596523067451560835137049824727289021825448700443748170984776165177572429518043}{18497578886576560463590021171955118125668321124501663848183264556722709946783234946182306} a^{13} - \frac{13561206748088086736542943066416521412430458376620205980853070585596561195136508351462025}{73990315546306241854360084687820472502673284498006655392733058226890839787132939784729224} a^{12} + \frac{9335505344147027713690228523974465369143807833019618023271395453706073268505975297921917}{36995157773153120927180042343910236251336642249003327696366529113445419893566469892364612} a^{11} - \frac{8795657089864340418591097399957776120782666516639051038086644821517868948648115688904679}{73990315546306241854360084687820472502673284498006655392733058226890839787132939784729224} a^{10} - \frac{1377359027780778770047477255012494787858335574964351424607895584967271105383822911738213}{6165859628858853487863340390651706041889440374833887949394421518907569982261078315394102} a^{9} - \frac{8504602737104988276335532400151500474965529902897029857696003552313555596293593248391119}{36995157773153120927180042343910236251336642249003327696366529113445419893566469892364612} a^{8} + \frac{28110204902457210372485581103397837421504690168159691711720824709683620112197112975968929}{73990315546306241854360084687820472502673284498006655392733058226890839787132939784729224} a^{7} + \frac{13373573806633773626564818180104060909629020594071735474477630493798739593445164004647919}{36995157773153120927180042343910236251336642249003327696366529113445419893566469892364612} a^{6} + \frac{632426538756151457830876930432168300513288173247272332781028232623673005474712953456031}{73990315546306241854360084687820472502673284498006655392733058226890839787132939784729224} a^{5} - \frac{11298086420236591553073927963342188150090569204944729793083667527534571582593429091519485}{24663438515435413951453361562606824167557761499335551797577686075630279929044313261576408} a^{4} - \frac{33983424521083692449271404981913258493271804059482098243345418846953859383258405641921639}{73990315546306241854360084687820472502673284498006655392733058226890839787132939784729224} a^{3} - \frac{6972302785016240852036563002584426882858148399284967073485836333841226251034969100923603}{36995157773153120927180042343910236251336642249003327696366529113445419893566469892364612} a^{2} - \frac{7083757706262346347389912468026739225727674426497348821176123191337025482153916110235361}{18497578886576560463590021171955118125668321124501663848183264556722709946783234946182306} a + \frac{770863671870831103812230283866736029533737912622162910855799973694422251672850644424819}{3082929814429426743931670195325853020944720187416943974697210759453784991130539157697051}$
Class group and class number
Not computed
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.66125.1, 5.1.78125.1, 10.2.30517578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $23$ | 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |