Normalized defining polynomial
\( x^{20} - 6 x^{19} + 20 x^{18} - 43 x^{17} + 69 x^{16} + 20 x^{15} - 412 x^{14} + 944 x^{13} - 1323 x^{12} + 777 x^{11} + 4726 x^{10} - 14558 x^{9} + 13369 x^{8} + 6119 x^{7} - 26308 x^{6} + 25264 x^{5} - 7173 x^{4} - 3960 x^{3} + 1458 x^{2} + 810 x + 243 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1897865884771553993938151074321=61^{6}\cdot 97^{2}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{17} + \frac{2}{9} a^{15} - \frac{4}{9} a^{14} + \frac{2}{9} a^{12} - \frac{4}{9} a^{11} + \frac{2}{9} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{1}{9} a^{5} - \frac{4}{9} a^{4} + \frac{2}{9} a^{3} + \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{135} a^{18} - \frac{1}{45} a^{17} + \frac{2}{135} a^{16} - \frac{2}{27} a^{15} + \frac{7}{45} a^{14} + \frac{38}{135} a^{13} + \frac{53}{135} a^{12} - \frac{49}{135} a^{11} - \frac{19}{45} a^{10} - \frac{11}{45} a^{9} + \frac{2}{27} a^{8} - \frac{56}{135} a^{7} + \frac{16}{135} a^{6} + \frac{56}{135} a^{5} + \frac{41}{135} a^{4} + \frac{43}{135} a^{3} + \frac{4}{45} a^{2} + \frac{1}{15} a + \frac{1}{5}$, $\frac{1}{3020842761858299813132882466352565515215} a^{19} - \frac{25457201914613828668395801088356457}{8606389634923931091546673693312152465} a^{18} - \frac{12882928586944938140287309317062027596}{3020842761858299813132882466352565515215} a^{17} + \frac{46698277287866254506885084010958408792}{3020842761858299813132882466352565515215} a^{16} - \frac{151808184657346144912211418280755952396}{335649195762033312570320274039173946135} a^{15} - \frac{521696655151393550066598029238178676656}{3020842761858299813132882466352565515215} a^{14} - \frac{46129624829549533976931513859141438273}{232372520142946139471760189719428116555} a^{13} - \frac{1308169092422084461376020688086503109756}{3020842761858299813132882466352565515215} a^{12} + \frac{324325353519050704849259635416327743458}{1006947587286099937710960822117521838405} a^{11} + \frac{82346191232846294968815990810567924026}{201389517457219987542192164423504367681} a^{10} - \frac{1126987425949221118704399530000260889123}{3020842761858299813132882466352565515215} a^{9} + \frac{189224949310006633140730882991813625124}{3020842761858299813132882466352565515215} a^{8} + \frac{168671978487127506615663135205422723215}{604168552371659962626576493270513103043} a^{7} - \frac{1186227549135082150166852294042202166138}{3020842761858299813132882466352565515215} a^{6} + \frac{90854024728371336020154370828649088659}{232372520142946139471760189719428116555} a^{5} + \frac{830689734403109531194441710352489632559}{3020842761858299813132882466352565515215} a^{4} - \frac{57407617217336667816912682914719093129}{201389517457219987542192164423504367681} a^{3} - \frac{83812894876305347946150498316747065226}{335649195762033312570320274039173946135} a^{2} - \frac{50455719008704344404321756368878796772}{111883065254011104190106758013057982045} a + \frac{1994014770934277384294512307909370212}{37294355084670368063368919337685994015}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15736356.744 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n664 are not computed |
| Character table for t20n664 is not computed |
Intermediate fields
| 5.5.24217.1, 10.2.3470102097613.2, 10.10.22584107094301.1, 10.2.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $97$ | $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 97.2.1.1 | $x^{2} - 97$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.2.1.1 | $x^{2} - 97$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 397 | Data not computed | ||||||