Normalized defining polynomial
\( x^{20} - 2 x^{19} - 5 x^{18} + 21 x^{17} - 13 x^{16} - 33 x^{15} + 63 x^{14} - 34 x^{13} - 13 x^{12} + 15 x^{11} - 86 x^{10} + 81 x^{9} - 132 x^{8} - 163 x^{7} - 159 x^{6} - 181 x^{5} - 56 x^{4} - 29 x^{3} - 7 x^{2} - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18660339843459071567495168=2^{15}\cdot 7^{10}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{14} a^{16} + \frac{3}{14} a^{15} - \frac{1}{7} a^{14} - \frac{1}{14} a^{13} + \frac{2}{7} a^{12} + \frac{1}{7} a^{11} - \frac{5}{14} a^{10} + \frac{3}{14} a^{9} + \frac{3}{14} a^{8} - \frac{1}{14} a^{7} - \frac{1}{14} a^{5} + \frac{1}{7} a^{4} + \frac{3}{14} a^{3} - \frac{3}{14} a^{2} - \frac{5}{14} a + \frac{5}{14}$, $\frac{1}{14} a^{17} + \frac{3}{14} a^{15} + \frac{5}{14} a^{14} - \frac{1}{2} a^{13} + \frac{2}{7} a^{12} + \frac{3}{14} a^{11} + \frac{2}{7} a^{10} - \frac{3}{7} a^{9} + \frac{2}{7} a^{8} + \frac{3}{14} a^{7} - \frac{1}{14} a^{6} + \frac{5}{14} a^{5} - \frac{3}{14} a^{4} + \frac{1}{7} a^{3} + \frac{2}{7} a^{2} + \frac{3}{7} a - \frac{1}{14}$, $\frac{1}{14} a^{18} + \frac{3}{14} a^{15} - \frac{1}{14} a^{14} - \frac{1}{2} a^{13} - \frac{1}{7} a^{12} + \frac{5}{14} a^{11} + \frac{1}{7} a^{10} - \frac{5}{14} a^{9} + \frac{1}{14} a^{8} + \frac{1}{7} a^{7} - \frac{1}{7} a^{6} - \frac{1}{2} a^{5} - \frac{2}{7} a^{4} - \frac{5}{14} a^{3} - \frac{3}{7} a^{2} + \frac{3}{7}$, $\frac{1}{664400904848403058} a^{19} - \frac{8952173406141135}{664400904848403058} a^{18} - \frac{10682147440438027}{664400904848403058} a^{17} - \frac{5064079058396597}{332200452424201529} a^{16} + \frac{45394739009922615}{332200452424201529} a^{15} + \frac{34463980616859699}{94914414978343294} a^{14} + \frac{148445083578778507}{664400904848403058} a^{13} + \frac{49266102017064799}{664400904848403058} a^{12} + \frac{155807487127957}{469873341476947} a^{11} + \frac{85862243208728559}{332200452424201529} a^{10} - \frac{110779738523772309}{664400904848403058} a^{9} - \frac{96814138925559677}{332200452424201529} a^{8} + \frac{93479167593268287}{332200452424201529} a^{7} - \frac{152806432714533858}{332200452424201529} a^{6} - \frac{295654450643875467}{664400904848403058} a^{5} - \frac{8828711140888977}{332200452424201529} a^{4} - \frac{66447748301961078}{332200452424201529} a^{3} + \frac{34218747619334105}{664400904848403058} a^{2} + \frac{227579845499805173}{664400904848403058} a + \frac{91744013435778378}{332200452424201529}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 41687.7704224 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20480 |
| The 152 conjugacy class representatives for t20n525 are not computed |
| Character table for t20n525 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 5.1.14161.1, 10.2.3409076657.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | $20$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.15.4 | $x^{10} - 18 x^{8} + 88 x^{6} - 368 x^{4} + 144 x^{2} - 288$ | $2$ | $5$ | $15$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 3]^{5}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.8.6.1 | $x^{8} + 35 x^{4} + 441$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |