Normalized defining polynomial
\( x^{20} - 7 x^{19} + 26 x^{18} - 74 x^{17} + 178 x^{16} - 348 x^{15} + 530 x^{14} - 614 x^{13} + 478 x^{12} + 34 x^{11} - 884 x^{10} + 1523 x^{9} - 1585 x^{8} + 1413 x^{7} - 1104 x^{6} + 634 x^{5} - 304 x^{4} + 151 x^{3} - 52 x^{2} + 4 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18660339843459071567495168=2^{15}\cdot 7^{10}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{17} a^{15} + \frac{1}{17} a^{14} - \frac{6}{17} a^{13} - \frac{5}{17} a^{12} - \frac{7}{17} a^{11} + \frac{1}{17} a^{10} - \frac{7}{17} a^{9} - \frac{2}{17} a^{8} + \frac{5}{17} a^{7} + \frac{1}{17} a^{6} - \frac{4}{17} a^{5} - \frac{3}{17} a^{4} - \frac{2}{17} a^{3} + \frac{3}{17} a^{2} + \frac{6}{17} a - \frac{3}{17}$, $\frac{1}{17} a^{16} - \frac{7}{17} a^{14} + \frac{1}{17} a^{13} - \frac{2}{17} a^{12} + \frac{8}{17} a^{11} - \frac{8}{17} a^{10} + \frac{5}{17} a^{9} + \frac{7}{17} a^{8} - \frac{4}{17} a^{7} - \frac{5}{17} a^{6} + \frac{1}{17} a^{5} + \frac{1}{17} a^{4} + \frac{5}{17} a^{3} + \frac{3}{17} a^{2} + \frac{8}{17} a + \frac{3}{17}$, $\frac{1}{17} a^{17} + \frac{8}{17} a^{14} + \frac{7}{17} a^{13} + \frac{7}{17} a^{12} - \frac{6}{17} a^{11} - \frac{5}{17} a^{10} - \frac{8}{17} a^{9} - \frac{1}{17} a^{8} - \frac{4}{17} a^{7} + \frac{8}{17} a^{6} + \frac{7}{17} a^{5} + \frac{1}{17} a^{4} + \frac{6}{17} a^{3} - \frac{5}{17} a^{2} - \frac{6}{17} a - \frac{4}{17}$, $\frac{1}{221} a^{18} - \frac{2}{221} a^{17} + \frac{2}{221} a^{16} + \frac{3}{221} a^{15} + \frac{74}{221} a^{14} + \frac{110}{221} a^{13} + \frac{18}{221} a^{12} - \frac{10}{221} a^{11} - \frac{19}{221} a^{10} - \frac{25}{221} a^{9} - \frac{80}{221} a^{8} + \frac{1}{13} a^{7} + \frac{10}{221} a^{6} + \frac{94}{221} a^{5} - \frac{98}{221} a^{4} + \frac{37}{221} a^{3} - \frac{73}{221} a^{2} - \frac{108}{221} a - \frac{90}{221}$, $\frac{1}{782824606809011} a^{19} - \frac{1018476930953}{782824606809011} a^{18} - \frac{611394340001}{60217277446847} a^{17} + \frac{7107514275516}{782824606809011} a^{16} - \frac{8446981831549}{782824606809011} a^{15} - \frac{8980566849915}{782824606809011} a^{14} + \frac{344677473256283}{782824606809011} a^{13} + \frac{274196498828351}{782824606809011} a^{12} - \frac{161836264615106}{782824606809011} a^{11} - \frac{181546272156228}{782824606809011} a^{10} - \frac{324595565252921}{782824606809011} a^{9} + \frac{237451997031771}{782824606809011} a^{8} - \frac{5786064927165}{46048506282883} a^{7} - \frac{14743135937030}{60217277446847} a^{6} - \frac{340711880990602}{782824606809011} a^{5} + \frac{140489920747219}{782824606809011} a^{4} + \frac{60851640216591}{782824606809011} a^{3} - \frac{280153782178945}{782824606809011} a^{2} - \frac{244092559047262}{782824606809011} a + \frac{176717214229440}{782824606809011}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 49924.022929 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times D_5$ (as 20T21):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $D_4\times D_5$ |
| Character table for $D_4\times D_5$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.113288.1, 5.1.14161.1, 10.2.3409076657.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | $20$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |