Properties

Label 20.4.18655986742...0000.1
Degree $20$
Signature $[4, 8]$
Discriminant $2^{30}\cdot 5^{5}\cdot 11^{18}$
Root discriminant $36.61$
Ramified primes $2, 5, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T130

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![89, 1192, 7652, 28394, 48635, 43868, 24450, 1902, -604, 4996, 2672, -1170, -1019, -256, 40, -44, -19, -10, 10, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 + 10*x^18 - 10*x^17 - 19*x^16 - 44*x^15 + 40*x^14 - 256*x^13 - 1019*x^12 - 1170*x^11 + 2672*x^10 + 4996*x^9 - 604*x^8 + 1902*x^7 + 24450*x^6 + 43868*x^5 + 48635*x^4 + 28394*x^3 + 7652*x^2 + 1192*x + 89)
 
gp: K = bnfinit(x^20 - 2*x^19 + 10*x^18 - 10*x^17 - 19*x^16 - 44*x^15 + 40*x^14 - 256*x^13 - 1019*x^12 - 1170*x^11 + 2672*x^10 + 4996*x^9 - 604*x^8 + 1902*x^7 + 24450*x^6 + 43868*x^5 + 48635*x^4 + 28394*x^3 + 7652*x^2 + 1192*x + 89, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} + 10 x^{18} - 10 x^{17} - 19 x^{16} - 44 x^{15} + 40 x^{14} - 256 x^{13} - 1019 x^{12} - 1170 x^{11} + 2672 x^{10} + 4996 x^{9} - 604 x^{8} + 1902 x^{7} + 24450 x^{6} + 43868 x^{5} + 48635 x^{4} + 28394 x^{3} + 7652 x^{2} + 1192 x + 89 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(18655986742119776375747379200000=2^{30}\cdot 5^{5}\cdot 11^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $36.61$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{14920592616944053965323999212808146802760753613} a^{19} + \frac{152456014573118779228077395996361685323750538}{346990525975443115472651144483910390761877991} a^{18} + \frac{5546528249536965240374294421569046187608502894}{14920592616944053965323999212808146802760753613} a^{17} - \frac{15909848562386505829644104002428873853686477}{14920592616944053965323999212808146802760753613} a^{16} - \frac{6721882903145818220940403389801264335709309053}{14920592616944053965323999212808146802760753613} a^{15} + \frac{817785228629272106950874009425294533795725029}{14920592616944053965323999212808146802760753613} a^{14} + \frac{6971069659316127309907928361612318640636337472}{14920592616944053965323999212808146802760753613} a^{13} - \frac{147704695846233761699041170351134443410665431}{346990525975443115472651144483910390761877991} a^{12} - \frac{4288748777839352154037666010781716426927712539}{14920592616944053965323999212808146802760753613} a^{11} + \frac{2940683755083719095890732720133699652830320709}{14920592616944053965323999212808146802760753613} a^{10} + \frac{3622042400884350238395581937476686192796626422}{14920592616944053965323999212808146802760753613} a^{9} + \frac{1845330812508339819667491371696924552436826303}{14920592616944053965323999212808146802760753613} a^{8} - \frac{7414833328290378618888587420604995705500704219}{14920592616944053965323999212808146802760753613} a^{7} - \frac{4795222134018703383159087599722057071663477324}{14920592616944053965323999212808146802760753613} a^{6} + \frac{4446540390411416565530131866857013886238849479}{14920592616944053965323999212808146802760753613} a^{5} - \frac{2610326052478591231067464147344483298430078446}{14920592616944053965323999212808146802760753613} a^{4} - \frac{5690900757154875332454528735345527431000531506}{14920592616944053965323999212808146802760753613} a^{3} + \frac{1686016713300660053942030583049516882659456047}{14920592616944053965323999212808146802760753613} a^{2} + \frac{3174608313296016628829089851115670701330030025}{14920592616944053965323999212808146802760753613} a + \frac{39557933388884826098510029754495306763727610}{167647108055551168149707856323687042727648917}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 40370967.7281 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T130:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 640
The 40 conjugacy class representatives for t20n130
Character table for t20n130 is not computed

Intermediate fields

\(\Q(\sqrt{11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{44})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20$ R ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ R $20$ $20$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ $20$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.5.0.1$x^{5} - x + 2$$1$$5$$0$$C_5$$[\ ]^{5}$
5.5.0.1$x^{5} - x + 2$$1$$5$$0$$C_5$$[\ ]^{5}$
5.10.5.1$x^{10} - 50 x^{6} + 625 x^{2} - 12500$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
11Data not computed