Normalized defining polynomial
\( x^{20} + 103 x^{18} - 3522 x^{16} - 668642 x^{14} - 24058174 x^{12} - 220957380 x^{10} + 4607526225 x^{8} + 121116031230 x^{6} + 1051048984525 x^{4} + 3980198089500 x^{2} + 5478679059725 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1853091914135141046229493177600000000000000=2^{20}\cdot 5^{14}\cdot 6029^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $129.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{12} - \frac{2}{5} a^{10} - \frac{2}{5} a^{8} + \frac{1}{5} a^{6}$, $\frac{1}{5} a^{15} - \frac{2}{5} a^{13} - \frac{2}{5} a^{11} - \frac{2}{5} a^{9} + \frac{1}{5} a^{7}$, $\frac{1}{30145} a^{16} + \frac{103}{30145} a^{14} - \frac{3522}{30145} a^{12} - \frac{5452}{30145} a^{10} - \frac{2464}{30145} a^{8} + \frac{1094}{6029} a^{6} + \frac{2740}{6029} a^{4} - \frac{1432}{6029} a^{2}$, $\frac{1}{30145} a^{17} + \frac{103}{30145} a^{15} - \frac{3522}{30145} a^{13} - \frac{5452}{30145} a^{11} - \frac{2464}{30145} a^{9} + \frac{1094}{6029} a^{7} + \frac{2740}{6029} a^{5} - \frac{1432}{6029} a^{3}$, $\frac{1}{111296448454637398153046766223054898517770437142130715} a^{18} + \frac{240817897996952584711892716627296743079310558218}{111296448454637398153046766223054898517770437142130715} a^{16} - \frac{372296476582416075665395344335387327441521389348035}{22259289690927479630609353244610979703554087428426143} a^{14} + \frac{32310221864119356262781031241998370712934885326291564}{111296448454637398153046766223054898517770437142130715} a^{12} + \frac{16487305498425726121429903687134168430018115309439832}{111296448454637398153046766223054898517770437142130715} a^{10} + \frac{28882753960022765676601632858107076014350238939052571}{111296448454637398153046766223054898517770437142130715} a^{8} - \frac{51970572297901450641322116768003938520327547805290768}{111296448454637398153046766223054898517770437142130715} a^{6} + \frac{3199803103779269815616012411540020498417496842042810}{22259289690927479630609353244610979703554087428426143} a^{4} - \frac{737283240766696596123225851139156776326660448009}{3692036770762560894113344376283128164464104731867} a^{2} - \frac{142437654238683391269088238933696021144255409}{612379626930263873629680606449349504804130823}$, $\frac{1}{556482242273186990765233831115274492588852185710653575} a^{19} + \frac{240817897996952584711892716627296743079310558218}{556482242273186990765233831115274492588852185710653575} a^{17} + \frac{20397807308015399252282376522934043066346480481685968}{556482242273186990765233831115274492588852185710653575} a^{15} - \frac{234801254427010399304531207693333385729714163814822152}{556482242273186990765233831115274492588852185710653575} a^{13} + \frac{83265174571208165013257963420967107540680377594718261}{556482242273186990765233831115274492588852185710653575} a^{11} + \frac{3826424921312208182737187703677600605000500048973240}{22259289690927479630609353244610979703554087428426143} a^{9} - \frac{1188451304278958840428510540935718352670938415074585}{22259289690927479630609353244610979703554087428426143} a^{7} + \frac{25459092794706749446225365656151000201971584270468953}{111296448454637398153046766223054898517770437142130715} a^{5} + \frac{1329358060151685038420692580285419910520309803145}{3692036770762560894113344376283128164464104731867} a^{3} - \frac{273439381619842227705689890366479006150503411}{612379626930263873629680606449349504804130823} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6986915812620 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 48 conjugacy class representatives for t20n375 |
| Character table for t20n375 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| 6029 | Data not computed | ||||||