Normalized defining polynomial
\( x^{20} - 115 x^{16} - 8 x^{15} - 2960 x^{13} + 830 x^{12} - 240 x^{11} - 25920 x^{10} + 16200 x^{9} - 4190 x^{8} + 280 x^{7} + 192780 x^{6} - 9656 x^{5} + 1225 x^{4} + 670680 x^{3} - 941220 x^{2} + 246960 x + 219389 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(180784159360000000000000000000000=2^{28}\cdot 5^{22}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{12} a^{16} - \frac{1}{12} a^{15} + \frac{1}{12} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{12} a^{10} + \frac{5}{12} a^{9} - \frac{1}{4} a^{8} - \frac{1}{12} a^{7} - \frac{5}{12} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{5}{12} a^{2} - \frac{1}{12} a - \frac{1}{3}$, $\frac{1}{12} a^{17} + \frac{1}{12} a^{14} - \frac{1}{4} a^{12} + \frac{1}{6} a^{11} + \frac{1}{12} a^{10} - \frac{1}{3} a^{9} + \frac{5}{12} a^{8} - \frac{1}{2} a^{7} + \frac{1}{12} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{3} a^{3} + \frac{1}{12} a^{2} + \frac{1}{12} a - \frac{1}{12}$, $\frac{1}{12} a^{18} + \frac{1}{12} a^{15} - \frac{1}{4} a^{13} + \frac{1}{6} a^{12} + \frac{1}{12} a^{11} + \frac{1}{6} a^{10} + \frac{5}{12} a^{9} + \frac{1}{12} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{3} a^{4} + \frac{1}{12} a^{3} - \frac{5}{12} a^{2} - \frac{1}{12} a - \frac{1}{2}$, $\frac{1}{377916175497653544303102536673529265995555910520153658784436} a^{19} + \frac{8282488178786516317593082329967895261227019082225385354343}{377916175497653544303102536673529265995555910520153658784436} a^{18} + \frac{721441974590188073530190997625540991639172718227369477495}{125972058499217848101034178891176421998518636840051219594812} a^{17} - \frac{1717219335019333795474189563801224465794932527622675348851}{377916175497653544303102536673529265995555910520153658784436} a^{16} - \frac{32781111310108964470960621120928945328773959345144133795137}{377916175497653544303102536673529265995555910520153658784436} a^{15} + \frac{5807255523110082294422108579021948446408172311862906177299}{62986029249608924050517089445588210999259318420025609797406} a^{14} - \frac{46280647401772276048374858224962706006214874920807922338739}{377916175497653544303102536673529265995555910520153658784436} a^{13} + \frac{34365453757700139858669538568429271328381596039145057131847}{188958087748826772151551268336764632997777955260076829392218} a^{12} - \frac{11717641871820888796960958990284033843385552701516914579863}{377916175497653544303102536673529265995555910520153658784436} a^{11} - \frac{311382315641089404554029883824668795445298125226903959834}{1657527085516024317118870774883900289454192590000673942037} a^{10} + \frac{165104680186864805376352592114800877100567497881349223709825}{377916175497653544303102536673529265995555910520153658784436} a^{9} - \frac{5484930871490514005507434521025683557644671072888085650209}{94479043874413386075775634168382316498888977630038414696109} a^{8} - \frac{181779525114968372624524916897629930254122048616573912357925}{377916175497653544303102536673529265995555910520153658784436} a^{7} - \frac{12319557990530134133414811186944329383060312361786693782331}{62986029249608924050517089445588210999259318420025609797406} a^{6} - \frac{2190673025430744382919772154367301981748370273899339460557}{377916175497653544303102536673529265995555910520153658784436} a^{5} + \frac{2919658348017678276883541263043605317186524728774245259279}{188958087748826772151551268336764632997777955260076829392218} a^{4} + \frac{14323266327343789804485306605201519115441863725803859274690}{31493014624804462025258544722794105499629659210012804898703} a^{3} - \frac{138592369241749922300622518113745870975588024730929567801171}{377916175497653544303102536673529265995555910520153658784436} a^{2} - \frac{38502185259308357221565223764784561507841634317431034211215}{188958087748826772151551268336764632997777955260076829392218} a - \frac{5695453162761998794620546734494203470646067426720591077863}{125972058499217848101034178891176421998518636840051219594812}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 241063577.29739463 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{7}) \), \(\Q(\sqrt{35}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{7})\), 5.1.50000.1, 10.2.2689120000000000.5, 10.2.13445600000000000.2, 10.2.12500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |