Normalized defining polynomial
\( x^{20} - 10 x^{19} + 27 x^{18} + 42 x^{17} - 284 x^{16} + 28 x^{15} + 1386 x^{14} - 400 x^{13} - 5377 x^{12} + 1166 x^{11} + 16307 x^{10} - 1076 x^{9} - 35399 x^{8} - 6192 x^{7} + 50275 x^{6} + 31415 x^{5} - 48995 x^{4} - 43179 x^{3} + 10583 x^{2} + 29682 x + 4061 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1806627930211353113514833291015625=3^{16}\cdot 5^{10}\cdot 73^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} + \frac{6}{13} a^{13} - \frac{6}{13} a^{12} - \frac{3}{13} a^{11} + \frac{2}{13} a^{10} - \frac{2}{13} a^{9} - \frac{5}{13} a^{8} - \frac{1}{13} a^{7} + \frac{1}{13} a^{6} + \frac{3}{13} a^{5} - \frac{2}{13} a^{4} - \frac{6}{13} a^{3} - \frac{1}{13} a - \frac{3}{13}$, $\frac{1}{13} a^{15} - \frac{3}{13} a^{13} - \frac{6}{13} a^{12} - \frac{6}{13} a^{11} - \frac{1}{13} a^{10} - \frac{6}{13} a^{9} + \frac{3}{13} a^{8} - \frac{6}{13} a^{7} - \frac{3}{13} a^{6} + \frac{6}{13} a^{5} + \frac{6}{13} a^{4} - \frac{3}{13} a^{3} - \frac{1}{13} a^{2} + \frac{3}{13} a + \frac{5}{13}$, $\frac{1}{39} a^{16} + \frac{1}{39} a^{15} + \frac{1}{39} a^{14} - \frac{11}{39} a^{13} + \frac{1}{13} a^{12} + \frac{7}{39} a^{11} - \frac{4}{13} a^{10} + \frac{2}{39} a^{9} + \frac{1}{13} a^{8} + \frac{1}{3} a^{7} + \frac{7}{39} a^{6} - \frac{2}{39} a^{5} + \frac{8}{39} a^{4} - \frac{2}{39} a^{3} + \frac{2}{39} a^{2} - \frac{3}{13} a + \frac{19}{39}$, $\frac{1}{39} a^{17} + \frac{8}{39} a^{13} + \frac{10}{39} a^{12} - \frac{16}{39} a^{11} - \frac{1}{39} a^{10} + \frac{16}{39} a^{9} - \frac{11}{39} a^{8} - \frac{6}{13} a^{7} + \frac{1}{13} a^{6} + \frac{7}{39} a^{5} + \frac{5}{39} a^{4} + \frac{10}{39} a^{3} - \frac{11}{39} a^{2} + \frac{16}{39} a - \frac{16}{39}$, $\frac{1}{57168576389691} a^{18} - \frac{1}{6352064043299} a^{17} - \frac{184823841409}{57168576389691} a^{16} + \frac{1478590731476}{57168576389691} a^{15} + \frac{514017113401}{57168576389691} a^{14} + \frac{9231706264780}{19056192129897} a^{13} + \frac{5729810344748}{57168576389691} a^{12} + \frac{15871930228048}{57168576389691} a^{11} + \frac{5351185389283}{57168576389691} a^{10} + \frac{25776766438277}{57168576389691} a^{9} - \frac{2443645823048}{6352064043299} a^{8} + \frac{28540723979306}{57168576389691} a^{7} + \frac{669069857439}{6352064043299} a^{6} - \frac{18567945370181}{57168576389691} a^{5} + \frac{24767170180850}{57168576389691} a^{4} + \frac{6951774458255}{19056192129897} a^{3} - \frac{891452719276}{4397582799207} a^{2} + \frac{4069354457555}{57168576389691} a - \frac{2491797656779}{57168576389691}$, $\frac{1}{7093305452703690207} a^{19} + \frac{62029}{7093305452703690207} a^{18} + \frac{59145837964001330}{7093305452703690207} a^{17} - \frac{59506749103003472}{7093305452703690207} a^{16} + \frac{12253668895755686}{2364435150901230069} a^{15} + \frac{40866835657284892}{7093305452703690207} a^{14} + \frac{545551783052527670}{7093305452703690207} a^{13} + \frac{596465268663799562}{2364435150901230069} a^{12} + \frac{237943940758351817}{7093305452703690207} a^{11} + \frac{241322217111369824}{788145050300410023} a^{10} - \frac{229946116413817312}{7093305452703690207} a^{9} + \frac{704646914764082837}{7093305452703690207} a^{8} - \frac{3353877519032483038}{7093305452703690207} a^{7} - \frac{2810930498291184782}{7093305452703690207} a^{6} + \frac{129859222594491323}{788145050300410023} a^{5} + \frac{1612464018779653541}{7093305452703690207} a^{4} + \frac{851414133038096282}{7093305452703690207} a^{3} + \frac{2223802337912157298}{7093305452703690207} a^{2} - \frac{2500827562993504181}{7093305452703690207} a + \frac{1511718079886532527}{7093305452703690207}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 206464661.249 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 48 conjugacy class representatives for t20n277 |
| Character table for t20n277 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.10791225.1, 10.2.42504446005228125.1, 10.10.582252685003125.1, 10.2.8500889201045625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ | |
| 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $73$ | 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.12.10.3 | $x^{12} - 14527 x^{6} + 78021889$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |