Normalized defining polynomial
\( x^{20} - 20 x^{18} + 255 x^{16} - 2070 x^{14} + 10740 x^{12} - 24045 x^{10} - 9775 x^{8} + 152600 x^{6} + 758075 x^{4} - 2663025 x^{2} + 969095 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(177014479780273437500000000000000000000=2^{20}\cdot 5^{31}\cdot 11^{4}\cdot 19^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{19} a^{16} - \frac{2}{19} a^{14} + \frac{5}{19} a^{12} + \frac{6}{19} a^{10} - \frac{7}{19} a^{8} + \frac{5}{19} a^{6} + \frac{2}{19} a^{4} + \frac{3}{19} a^{2}$, $\frac{1}{19} a^{17} - \frac{2}{19} a^{15} + \frac{5}{19} a^{13} + \frac{6}{19} a^{11} - \frac{7}{19} a^{9} + \frac{5}{19} a^{7} + \frac{2}{19} a^{5} + \frac{3}{19} a^{3}$, $\frac{1}{33812841609291863806515753563} a^{18} - \frac{781838040791070132482638820}{33812841609291863806515753563} a^{16} + \frac{11268127880006279546501268840}{33812841609291863806515753563} a^{14} - \frac{13334596360843848758658285448}{33812841609291863806515753563} a^{12} + \frac{10470973932981459468397652275}{33812841609291863806515753563} a^{10} - \frac{12866166542034763341440272386}{33812841609291863806515753563} a^{8} + \frac{16811231236716334453880571360}{33812841609291863806515753563} a^{6} + \frac{13459293830177984084169270920}{33812841609291863806515753563} a^{4} + \frac{3915069204231567452261704163}{33812841609291863806515753563} a^{2} - \frac{481080673562843908497703503}{1779623242594308621395565977}$, $\frac{1}{3415097002538478244458091109863} a^{19} - \frac{73746390987157723609700843877}{3415097002538478244458091109863} a^{17} + \frac{630577016302825679792158228836}{3415097002538478244458091109863} a^{15} + \frac{1582987452246250984633164395921}{3415097002538478244458091109863} a^{13} - \frac{1576952958461141830816447199209}{3415097002538478244458091109863} a^{11} + \frac{497885704082531810999087163013}{3415097002538478244458091109863} a^{9} + \frac{1613133279843811167845703252729}{3415097002538478244458091109863} a^{7} - \frac{267721178499722778096330153446}{3415097002538478244458091109863} a^{5} + \frac{664155292206720065990016681630}{3415097002538478244458091109863} a^{3} - \frac{73445633619929497385715908560}{179741947502025170760952163677} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 52961455987.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 800 |
| The 44 conjugacy class representatives for t20n168 |
| Character table for t20n168 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.38000.1, 10.2.1333038330078125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $20$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.8.8.2 | $x^{8} + 2 x^{7} + 8 x^{2} + 48$ | $2$ | $4$ | $8$ | $C_2^2:C_4$ | $[2, 2]^{4}$ | |
| 2.8.8.2 | $x^{8} + 2 x^{7} + 8 x^{2} + 48$ | $2$ | $4$ | $8$ | $C_2^2:C_4$ | $[2, 2]^{4}$ | |
| 5 | Data not computed | ||||||
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.5.0.1 | $x^{5} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 19.5.0.1 | $x^{5} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |