Normalized defining polynomial
\( x^{20} - 13 x^{18} + 63 x^{16} - 166 x^{14} + 305 x^{12} - 351 x^{10} + 293 x^{8} - 158 x^{6} + 71 x^{4} - 25 x^{2} + 5 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1756027953152000000000000000=2^{28}\cdot 5^{15}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{10} a^{12} + \frac{1}{10} a^{10} - \frac{2}{5} a^{8} + \frac{1}{10} a^{6} - \frac{2}{5} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{13} + \frac{1}{10} a^{11} - \frac{2}{5} a^{9} + \frac{1}{10} a^{7} - \frac{2}{5} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{10} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} + \frac{2}{5} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{10} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{16} - \frac{1}{2} a^{8} + \frac{2}{5} a^{6} - \frac{1}{2}$, $\frac{1}{10} a^{17} - \frac{1}{2} a^{9} + \frac{2}{5} a^{7} - \frac{1}{2} a$, $\frac{1}{50900} a^{18} - \frac{1}{20} a^{17} + \frac{1593}{50900} a^{16} + \frac{174}{12725} a^{14} - \frac{219}{5090} a^{12} + \frac{2107}{10180} a^{10} - \frac{1}{4} a^{9} + \frac{9879}{50900} a^{8} - \frac{1}{5} a^{7} + \frac{6581}{25450} a^{6} + \frac{2167}{25450} a^{4} - \frac{4601}{10180} a^{2} - \frac{1}{4} a + \frac{1469}{10180}$, $\frac{1}{50900} a^{19} - \frac{238}{12725} a^{17} - \frac{1}{20} a^{16} + \frac{174}{12725} a^{15} - \frac{219}{5090} a^{13} + \frac{2107}{10180} a^{11} - \frac{1423}{25450} a^{9} + \frac{1}{4} a^{8} + \frac{1491}{25450} a^{7} - \frac{1}{5} a^{6} + \frac{2167}{25450} a^{5} - \frac{1}{2} a^{4} - \frac{4601}{10180} a^{3} - \frac{269}{2545} a + \frac{1}{4}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1431459.05224 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_5:F_5$ (as 20T49):
| A solvable group of order 200 |
| The 20 conjugacy class representatives for $C_2\times C_5:F_5$ |
| Character table for $C_2\times C_5:F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 10.2.292820000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $11$ | 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 11.10.8.3 | $x^{10} - 11 x^{5} + 847$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |