Normalized defining polynomial
\( x^{20} - 2 x^{19} - 14 x^{18} + 30 x^{17} + 13 x^{16} - 8 x^{15} + 8 x^{14} - 100 x^{13} + 183 x^{12} - 182 x^{11} + 282 x^{10} - 336 x^{9} + 430 x^{8} - 294 x^{7} + 400 x^{6} - 232 x^{5} + 137 x^{4} - 130 x^{3} + 6 x^{2} - 24 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17546689939912502804480000000=2^{30}\cdot 5^{7}\cdot 3803^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3803$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{7} a^{16} - \frac{2}{7} a^{15} - \frac{1}{7} a^{14} + \frac{2}{7} a^{13} - \frac{2}{7} a^{12} - \frac{3}{7} a^{11} - \frac{2}{7} a^{10} + \frac{1}{7} a^{7} - \frac{1}{7} a^{5} + \frac{1}{7} a^{4} + \frac{2}{7} a^{3} + \frac{2}{7} a^{2} + \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{7} a^{17} + \frac{2}{7} a^{15} + \frac{2}{7} a^{13} - \frac{1}{7} a^{11} + \frac{3}{7} a^{10} + \frac{1}{7} a^{8} + \frac{2}{7} a^{7} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{3}{7} a^{4} - \frac{1}{7} a^{3} - \frac{2}{7} a^{2} + \frac{1}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{18} - \frac{3}{7} a^{15} - \frac{3}{7} a^{14} + \frac{3}{7} a^{13} + \frac{3}{7} a^{12} + \frac{2}{7} a^{11} - \frac{3}{7} a^{10} + \frac{1}{7} a^{9} + \frac{2}{7} a^{8} - \frac{3}{7} a^{7} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{3}{7} a^{4} + \frac{1}{7} a^{3} - \frac{3}{7} a^{2} + \frac{3}{7} a + \frac{2}{7}$, $\frac{1}{27222136095539066504095} a^{19} + \frac{144295388182309651181}{3888876585077009500585} a^{18} - \frac{293672517026505074226}{27222136095539066504095} a^{17} + \frac{1325996586301074165766}{27222136095539066504095} a^{16} + \frac{4293446770151437164957}{27222136095539066504095} a^{15} - \frac{2678782004293355589261}{5444427219107813300819} a^{14} - \frac{2287458673731020022647}{27222136095539066504095} a^{13} + \frac{6941677474719107456862}{27222136095539066504095} a^{12} + \frac{12055300826249364127841}{27222136095539066504095} a^{11} - \frac{13586852682527531794328}{27222136095539066504095} a^{10} + \frac{1679491231919046811432}{5444427219107813300819} a^{9} + \frac{3732693856280801899674}{27222136095539066504095} a^{8} - \frac{11873485350675867114814}{27222136095539066504095} a^{7} - \frac{112987795243342260114}{5444427219107813300819} a^{6} + \frac{1759166691234587610910}{5444427219107813300819} a^{5} - \frac{3743540339862825688072}{27222136095539066504095} a^{4} + \frac{7508570104014120198789}{27222136095539066504095} a^{3} + \frac{8758906683154664542536}{27222136095539066504095} a^{2} + \frac{372780506009459802791}{777775317015401900117} a + \frac{1884665967616084042181}{27222136095539066504095}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2320884.02662 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 245760 |
| The 201 conjugacy class representatives for t20n886 are not computed |
| Character table for t20n886 is not computed |
Intermediate fields
| 5.3.19015.1, 10.4.370247910400.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3803 | Data not computed | ||||||