Normalized defining polynomial
\( x^{20} - 5 x^{19} + 49 x^{18} - 163 x^{17} + 669 x^{16} - 1520 x^{15} + 1571 x^{14} - 329 x^{13} - 28502 x^{12} + 84298 x^{11} - 225519 x^{10} + 516232 x^{9} - 688895 x^{8} + 970940 x^{7} - 742381 x^{6} + 56136 x^{5} + 999706 x^{4} - 1205067 x^{3} + 1568454 x^{2} - 1370685 x + 786559 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1753321685810638349237472141064453125=3^{10}\cdot 5^{11}\cdot 239^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{11} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{11} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{6} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{25} a^{14} - \frac{1}{25} a^{13} - \frac{8}{25} a^{11} + \frac{7}{25} a^{10} + \frac{12}{25} a^{9} + \frac{4}{25} a^{8} - \frac{2}{25} a^{7} - \frac{2}{25} a^{6} - \frac{9}{25} a^{5} + \frac{1}{25} a^{4} + \frac{1}{5} a^{3} - \frac{2}{25} a^{2} - \frac{9}{25} a + \frac{4}{25}$, $\frac{1}{25} a^{15} - \frac{1}{25} a^{13} + \frac{2}{25} a^{12} - \frac{6}{25} a^{11} - \frac{6}{25} a^{10} - \frac{9}{25} a^{9} - \frac{3}{25} a^{8} + \frac{1}{25} a^{7} - \frac{1}{25} a^{6} - \frac{3}{25} a^{5} - \frac{9}{25} a^{4} - \frac{12}{25} a^{3} - \frac{6}{25} a^{2} - \frac{6}{25}$, $\frac{1}{89625} a^{16} - \frac{4}{89625} a^{15} + \frac{499}{89625} a^{14} + \frac{6496}{89625} a^{13} + \frac{1631}{89625} a^{12} + \frac{22273}{89625} a^{11} + \frac{706}{5975} a^{10} + \frac{33638}{89625} a^{9} + \frac{921}{29875} a^{8} + \frac{7426}{17925} a^{7} - \frac{4588}{29875} a^{6} - \frac{31862}{89625} a^{5} + \frac{12868}{29875} a^{4} - \frac{26348}{89625} a^{3} + \frac{13514}{89625} a^{2} + \frac{5624}{89625} a + \frac{42109}{89625}$, $\frac{1}{448125} a^{17} + \frac{2}{448125} a^{16} + \frac{812}{89625} a^{15} - \frac{1687}{89625} a^{14} + \frac{1172}{448125} a^{13} + \frac{21304}{448125} a^{12} + \frac{58831}{149375} a^{11} + \frac{219068}{448125} a^{10} + \frac{69392}{149375} a^{9} - \frac{10822}{448125} a^{8} - \frac{24733}{149375} a^{7} + \frac{114994}{448125} a^{6} + \frac{71034}{149375} a^{5} + \frac{101311}{448125} a^{4} + \frac{99206}{448125} a^{3} + \frac{118973}{448125} a^{2} + \frac{111703}{448125} a - \frac{6602}{149375}$, $\frac{1}{1344375} a^{18} - \frac{4}{1344375} a^{16} + \frac{1174}{89625} a^{15} - \frac{18223}{1344375} a^{14} + \frac{1949}{53775} a^{13} + \frac{7}{10755} a^{12} + \frac{156127}{1344375} a^{11} - \frac{55412}{268875} a^{10} + \frac{150482}{448125} a^{9} - \frac{99482}{268875} a^{8} - \frac{649333}{1344375} a^{7} - \frac{204446}{1344375} a^{6} + \frac{3178}{149375} a^{5} - \frac{44909}{149375} a^{4} + \frac{8197}{448125} a^{3} + \frac{520642}{1344375} a^{2} + \frac{423023}{1344375} a - \frac{671278}{1344375}$, $\frac{1}{896726630591584490134963685339184475490625} a^{19} - \frac{97519194100123921141596055529094926}{896726630591584490134963685339184475490625} a^{18} - \frac{75013077878346504862254286649337632}{179345326118316898026992737067836895098125} a^{17} - \frac{2249984362736033216958823299936360568}{896726630591584490134963685339184475490625} a^{16} - \frac{17320145700513772996464085746510228961963}{896726630591584490134963685339184475490625} a^{15} - \frac{5445417055689517097412629660947044130247}{896726630591584490134963685339184475490625} a^{14} + \frac{7923489634553956925366054772649634567173}{896726630591584490134963685339184475490625} a^{13} + \frac{28771706029166712772117685547880013356436}{298908876863861496711654561779728158496875} a^{12} + \frac{1753842812150388325152564115369256453896}{19927258457590766447443637451981877233125} a^{11} - \frac{430540835893239023112932798577225396723652}{896726630591584490134963685339184475490625} a^{10} + \frac{104203053801357721899335521062973762923878}{896726630591584490134963685339184475490625} a^{9} - \frac{407765476570084052624644816119268268651426}{896726630591584490134963685339184475490625} a^{8} + \frac{85846165257928314898852620318448093137077}{298908876863861496711654561779728158496875} a^{7} + \frac{171442083598663803043512193162709071474489}{896726630591584490134963685339184475490625} a^{6} + \frac{27945316123943392946105560289630453636453}{59781775372772299342330912355945631699375} a^{5} + \frac{98176920227158384864183089458608593125692}{298908876863861496711654561779728158496875} a^{4} + \frac{11919445784511202486688998243508778939238}{35869065223663379605398547413567379019625} a^{3} + \frac{18846439101720941134185578043766828973082}{99636292287953832237218187259909386165625} a^{2} + \frac{10137297225771019338235723264160866254301}{896726630591584490134963685339184475490625} a - \frac{196850298473823284968897031731340370917641}{896726630591584490134963685339184475490625}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4646462497.73 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 100 conjugacy class representatives for t20n426 are not computed |
| Character table for t20n426 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 239 | Data not computed | ||||||