Properties

Label 20.4.17327212977...5625.1
Degree $20$
Signature $[4, 8]$
Discriminant $5^{10}\cdot 36497^{4}$
Root discriminant $18.28$
Ramified primes $5, 36497$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T279

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, -1, -4, -4, -7, -12, -19, 16, 73, 71, -73, 16, 19, -12, 7, -4, 4, -1, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 - x^18 + 4*x^17 - 4*x^16 + 7*x^15 - 12*x^14 + 19*x^13 + 16*x^12 - 73*x^11 + 71*x^10 + 73*x^9 + 16*x^8 - 19*x^7 - 12*x^6 - 7*x^5 - 4*x^4 - 4*x^3 - x^2 + x + 1)
 
gp: K = bnfinit(x^20 - x^19 - x^18 + 4*x^17 - 4*x^16 + 7*x^15 - 12*x^14 + 19*x^13 + 16*x^12 - 73*x^11 + 71*x^10 + 73*x^9 + 16*x^8 - 19*x^7 - 12*x^6 - 7*x^5 - 4*x^4 - 4*x^3 - x^2 + x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} - x^{18} + 4 x^{17} - 4 x^{16} + 7 x^{15} - 12 x^{14} + 19 x^{13} + 16 x^{12} - 73 x^{11} + 71 x^{10} + 73 x^{9} + 16 x^{8} - 19 x^{7} - 12 x^{6} - 7 x^{5} - 4 x^{4} - 4 x^{3} - x^{2} + x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(17327212977905840634765625=5^{10}\cdot 36497^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $18.28$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 36497$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{45749077} a^{18} + \frac{9635513}{45749077} a^{17} - \frac{10706041}{45749077} a^{16} - \frac{2072604}{4159007} a^{15} + \frac{18564460}{45749077} a^{14} - \frac{21901888}{45749077} a^{13} - \frac{12592684}{45749077} a^{12} - \frac{21887889}{45749077} a^{11} + \frac{21280767}{45749077} a^{10} - \frac{8067038}{45749077} a^{9} - \frac{21280767}{45749077} a^{8} - \frac{21887889}{45749077} a^{7} + \frac{12592684}{45749077} a^{6} - \frac{21901888}{45749077} a^{5} - \frac{18564460}{45749077} a^{4} - \frac{2072604}{4159007} a^{3} + \frac{10706041}{45749077} a^{2} + \frac{9635513}{45749077} a - \frac{1}{45749077}$, $\frac{1}{8280582937} a^{19} - \frac{20}{8280582937} a^{18} - \frac{3111015675}{8280582937} a^{17} - \frac{2577643401}{8280582937} a^{16} - \frac{1087251350}{8280582937} a^{15} - \frac{650017839}{8280582937} a^{14} - \frac{3911461995}{8280582937} a^{13} + \frac{491853589}{8280582937} a^{12} - \frac{1335187703}{8280582937} a^{11} - \frac{2301934692}{8280582937} a^{10} + \frac{3605735335}{8280582937} a^{9} - \frac{59632833}{752780267} a^{8} + \frac{264617125}{752780267} a^{7} - \frac{169650750}{8280582937} a^{6} + \frac{3493916703}{8280582937} a^{5} + \frac{559568230}{8280582937} a^{4} - \frac{2650578387}{8280582937} a^{3} - \frac{369921445}{752780267} a^{2} + \frac{3167313914}{8280582937} a + \frac{2342838460}{8280582937}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 41483.866986 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T279:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 3840
The 36 conjugacy class representatives for t20n279
Character table for t20n279 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 5.5.36497.1, 10.10.4162596903125.1, 10.2.1332031009.1, 10.2.4162596903125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 10 siblings: data not computed
Degree 20 siblings: data not computed
Degree 30 siblings: data not computed
Degree 32 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.12.6.1$x^{12} + 500 x^{6} - 3125 x^{2} + 62500$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
36497Data not computed