Normalized defining polynomial
\( x^{20} - 5 x^{19} + 13 x^{18} + 2 x^{17} + 44 x^{16} + 7 x^{15} + 43 x^{14} + 3262 x^{13} + 1243 x^{12} - 1035 x^{11} + 15927 x^{10} + 30420 x^{9} + 9124 x^{8} - 199793 x^{7} - 166999 x^{6} + 688157 x^{5} + 537134 x^{4} - 1085808 x^{3} - 893488 x^{2} + 520727 x + 446933 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1732130950652108498309514155453770033=61^{6}\cdot 97^{5}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{25647191833526779040588556152209892771814101525328357262501} a^{19} - \frac{6523874007177505426795944943855378797605090099531946264895}{25647191833526779040588556152209892771814101525328357262501} a^{18} - \frac{1160618747361783863518951488136924764204697290036685631}{42674196062440564127435201584375861517161566597884121901} a^{17} + \frac{11769113906570671019461484929357749661291485774572073694940}{25647191833526779040588556152209892771814101525328357262501} a^{16} - \frac{8685808485923654245636079633772673174695282262510947068383}{25647191833526779040588556152209892771814101525328357262501} a^{15} - \frac{6304194524687719828043450174657682182805256726421926850561}{25647191833526779040588556152209892771814101525328357262501} a^{14} + \frac{9552939599833382281532963172562263295166560620040935021383}{25647191833526779040588556152209892771814101525328357262501} a^{13} - \frac{4180802297908966093084438874349208875898731883801114803218}{25647191833526779040588556152209892771814101525328357262501} a^{12} + \frac{83269435956305189923966202054233856201656796575718012445}{239693381621745598510173421983270025904804687152601469743} a^{11} - \frac{9758010857006274577957603463224707748350124052629051423859}{25647191833526779040588556152209892771814101525328357262501} a^{10} - \frac{10533066678272427225824524533271444867301414460575908133345}{25647191833526779040588556152209892771814101525328357262501} a^{9} - \frac{6585554723984490583866344531164293021678636712148898717471}{25647191833526779040588556152209892771814101525328357262501} a^{8} + \frac{1479230379559841498417094472493960117033470245487137833383}{25647191833526779040588556152209892771814101525328357262501} a^{7} + \frac{1366260547500680211434597215147180959478430209710534486502}{25647191833526779040588556152209892771814101525328357262501} a^{6} + \frac{190228014651659430537424760121353433475556054702391121541}{25647191833526779040588556152209892771814101525328357262501} a^{5} - \frac{4583863550346942247194130300101173154233462890871297630444}{25647191833526779040588556152209892771814101525328357262501} a^{4} - \frac{1580613895376979393723323323413267227404576939876375161197}{25647191833526779040588556152209892771814101525328357262501} a^{3} - \frac{11344234509813145454976983291400259904676474393738941385057}{25647191833526779040588556152209892771814101525328357262501} a^{2} - \frac{7026720994982426561818359689822442956434665989858868596566}{25647191833526779040588556152209892771814101525328357262501} a + \frac{5358120307463252150209875576073662620263161198700014204629}{25647191833526779040588556152209892771814101525328357262501}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14559270153.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n792 are not computed |
| Character table for t20n792 is not computed |
Intermediate fields
| 5.5.24217.1, 10.2.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 97 | Data not computed | ||||||
| 397 | Data not computed | ||||||