Normalized defining polynomial
\( x^{20} - 4 x^{19} + 22 x^{18} - 51 x^{17} + 173 x^{16} - 211 x^{15} + 365 x^{14} + 443 x^{13} - 1251 x^{12} + 2768 x^{11} - 4963 x^{10} - 4394 x^{9} - 16011 x^{8} - 28354 x^{7} - 65888 x^{6} - 78624 x^{5} - 53001 x^{4} - 19059 x^{3} - 7139 x^{2} - 1564 x + 289 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(170951887142655083512160513274121=13^{2}\cdot 97^{2}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 97, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{16} + \frac{1}{3} a^{15} + \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{747} a^{18} + \frac{22}{747} a^{17} + \frac{2}{747} a^{16} - \frac{36}{83} a^{15} + \frac{92}{249} a^{14} + \frac{71}{747} a^{13} + \frac{19}{83} a^{12} + \frac{23}{83} a^{11} + \frac{1}{83} a^{10} - \frac{22}{747} a^{9} + \frac{38}{83} a^{8} + \frac{341}{747} a^{7} + \frac{298}{747} a^{6} + \frac{128}{747} a^{5} + \frac{64}{747} a^{4} - \frac{116}{249} a^{3} + \frac{161}{747} a^{2} - \frac{89}{747} a - \frac{185}{747}$, $\frac{1}{84843174588866491031891782560743614262714349} a^{19} + \frac{6055230163772498300736344867622794893594}{28281058196288830343963927520247871420904783} a^{18} + \frac{8700705525955534373873498588633866351161058}{84843174588866491031891782560743614262714349} a^{17} - \frac{1769804538149746486352086787659003192599730}{4990774975815675943052457797690800838983197} a^{16} + \frac{1807845464225237325191853160658127180085790}{28281058196288830343963927520247871420904783} a^{15} + \frac{40151440326306395243244800209663884373798673}{84843174588866491031891782560743614262714349} a^{14} - \frac{15873851021644569361178261866385813999455034}{84843174588866491031891782560743614262714349} a^{13} - \frac{3379589680491145736944365732405806228506751}{9427019398762943447987975840082623806968261} a^{12} + \frac{641729036155658793767350362126840888647443}{3142339799587647815995991946694207935656087} a^{11} - \frac{633925030691957782968495781690959069348343}{2293058772672067325186264393533611196289577} a^{10} - \frac{36709914740879343725268385680796959228481520}{84843174588866491031891782560743614262714349} a^{9} + \frac{8927199006152565745951293424994400061795508}{84843174588866491031891782560743614262714349} a^{8} - \frac{19646170663902281379635112116518239855044809}{84843174588866491031891782560743614262714349} a^{7} - \frac{18652551807649984562742719439483609032320253}{84843174588866491031891782560743614262714349} a^{6} - \frac{37452036826048693185622488927302690459907385}{84843174588866491031891782560743614262714349} a^{5} + \frac{35680448949455368584310384400000988313007318}{84843174588866491031891782560743614262714349} a^{4} - \frac{6462501262608605588280481751056968936318130}{84843174588866491031891782560743614262714349} a^{3} + \frac{8630364841384186043732926302722479300541969}{84843174588866491031891782560743614262714349} a^{2} + \frac{12177522373225918779451589554602403231213555}{28281058196288830343963927520247871420904783} a + \frac{380909325829841788792716288962591430107884}{4990774975815675943052457797690800838983197}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120168173.631 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 104 conjugacy class representatives for t20n347 are not computed |
| Character table for t20n347 is not computed |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||