Normalized defining polynomial
\( x^{20} - 10 x^{19} + 35 x^{18} - 30 x^{17} - 105 x^{16} + 228 x^{15} + 90 x^{14} - 540 x^{13} + 45 x^{12} + 770 x^{11} - 644335 x^{10} + 3220250 x^{9} - 43483725 x^{8} + 154609500 x^{7} - 473489850 x^{6} + 892866516 x^{5} - 1217545665 x^{4} + 1120914990 x^{3} - 681245695 x^{2} + 244797530 x + 103710079859 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16998350586511360000000000000000000000=2^{38}\cdot 5^{22}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{11} a^{4} - \frac{2}{11} a^{3} - \frac{1}{11} a^{2} + \frac{2}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{5} - \frac{5}{11} a^{3} + \frac{5}{11} a + \frac{2}{11}$, $\frac{1}{11} a^{6} + \frac{1}{11} a^{3} + \frac{1}{11} a + \frac{5}{11}$, $\frac{1}{11} a^{7} + \frac{2}{11} a^{3} + \frac{2}{11} a^{2} + \frac{3}{11} a - \frac{1}{11}$, $\frac{1}{121} a^{8} - \frac{4}{121} a^{7} + \frac{2}{121} a^{6} - \frac{3}{121} a^{5} - \frac{5}{121} a^{4} + \frac{47}{121} a^{3} + \frac{2}{121} a^{2} - \frac{51}{121} a - \frac{21}{121}$, $\frac{1}{121} a^{9} - \frac{3}{121} a^{7} + \frac{5}{121} a^{6} + \frac{5}{121} a^{5} + \frac{5}{121} a^{4} + \frac{25}{121} a^{3} + \frac{1}{121} a^{2} - \frac{5}{121} a + \frac{48}{121}$, $\frac{1}{605} a^{10} + \frac{3}{121} a^{7} - \frac{26}{605} a^{5} + \frac{2}{121} a^{4} + \frac{57}{121} a^{3} + \frac{9}{121} a^{2} - \frac{32}{121} a - \frac{63}{605}$, $\frac{1}{605} a^{11} + \frac{1}{121} a^{7} - \frac{1}{605} a^{6} - \frac{5}{121} a^{4} - \frac{5}{11} a^{3} + \frac{17}{121} a^{2} + \frac{152}{605} a + \frac{30}{121}$, $\frac{1}{6655} a^{12} + \frac{1}{1331} a^{11} - \frac{2}{6655} a^{10} + \frac{2}{1331} a^{9} + \frac{5}{1331} a^{8} + \frac{269}{6655} a^{7} + \frac{28}{1331} a^{6} + \frac{127}{6655} a^{5} - \frac{17}{1331} a^{4} + \frac{614}{1331} a^{3} - \frac{1498}{6655} a^{2} - \frac{67}{1331} a - \frac{2804}{6655}$, $\frac{1}{6655} a^{13} - \frac{1}{1331} a^{11} - \frac{2}{6655} a^{10} - \frac{5}{1331} a^{9} - \frac{21}{6655} a^{8} - \frac{32}{1331} a^{7} + \frac{57}{1331} a^{6} - \frac{258}{6655} a^{5} - \frac{16}{1331} a^{4} + \frac{2402}{6655} a^{3} - \frac{153}{1331} a^{2} + \frac{47}{1331} a + \frac{2811}{6655}$, $\frac{1}{6655} a^{14} + \frac{1}{6655} a^{11} - \frac{2}{6655} a^{10} - \frac{26}{6655} a^{9} + \frac{4}{1331} a^{8} + \frac{29}{1331} a^{7} + \frac{299}{6655} a^{6} - \frac{138}{6655} a^{5} - \frac{113}{6655} a^{4} + \frac{563}{1331} a^{3} - \frac{428}{1331} a^{2} + \frac{2687}{6655} a - \frac{2624}{6655}$, $\frac{1}{6655} a^{15} + \frac{4}{6655} a^{11} - \frac{2}{6655} a^{10} + \frac{2}{1331} a^{9} + \frac{2}{1331} a^{8} + \frac{50}{1331} a^{7} + \frac{96}{6655} a^{6} + \frac{123}{6655} a^{5} - \frac{47}{1331} a^{4} + \frac{630}{1331} a^{3} + \frac{331}{1331} a^{2} + \frac{2683}{6655} a - \frac{67}{6655}$, $\frac{1}{366025} a^{16} - \frac{8}{366025} a^{15} + \frac{9}{366025} a^{14} + \frac{2}{33275} a^{13} + \frac{18}{366025} a^{12} + \frac{12}{366025} a^{11} + \frac{156}{366025} a^{10} - \frac{714}{366025} a^{9} + \frac{183}{366025} a^{8} - \frac{10968}{366025} a^{7} - \frac{2011}{366025} a^{6} - \frac{7074}{366025} a^{5} + \frac{10083}{366025} a^{4} + \frac{3119}{33275} a^{3} - \frac{15589}{366025} a^{2} + \frac{114331}{366025} a - \frac{49444}{366025}$, $\frac{1}{366025} a^{17} - \frac{16}{366025} a^{14} - \frac{26}{366025} a^{13} - \frac{9}{366025} a^{12} + \frac{32}{366025} a^{11} + \frac{204}{366025} a^{10} - \frac{1294}{366025} a^{9} + \frac{131}{33275} a^{8} + \frac{947}{73205} a^{7} + \frac{6208}{366025} a^{6} - \frac{8724}{366025} a^{5} + \frac{6953}{366025} a^{4} + \frac{1043}{366025} a^{3} - \frac{51961}{366025} a^{2} - \frac{12486}{366025} a + \frac{118423}{366025}$, $\frac{1}{762818471882136266036310475} a^{18} - \frac{9}{762818471882136266036310475} a^{17} + \frac{81361735748538942544}{762818471882136266036310475} a^{16} - \frac{650893885988311540148}{762818471882136266036310475} a^{15} - \frac{53333823886437726082181}{762818471882136266036310475} a^{14} + \frac{40857325214155733158408}{762818471882136266036310475} a^{13} - \frac{2806142047324666456129}{152563694376427253207262095} a^{12} + \frac{555033616810358691656689}{762818471882136266036310475} a^{11} - \frac{21757673849880023468956}{762818471882136266036310475} a^{10} - \frac{2609520020011037885458984}{762818471882136266036310475} a^{9} + \frac{2860760581375450671318853}{762818471882136266036310475} a^{8} + \frac{18990367477291249497309601}{762818471882136266036310475} a^{7} + \frac{1002957383711157031535392}{30512738875285450641452419} a^{6} - \frac{27018704448855601568235327}{762818471882136266036310475} a^{5} - \frac{1492380226576055178795272}{762818471882136266036310475} a^{4} - \frac{344522124999118129484000372}{762818471882136266036310475} a^{3} - \frac{192685304071353579558093678}{762818471882136266036310475} a^{2} - \frac{43050167480386790097540724}{762818471882136266036310475} a - \frac{203375046799796715867701408}{762818471882136266036310475}$, $\frac{1}{251599900152779540420504177387058425} a^{19} + \frac{164914652}{251599900152779540420504177387058425} a^{18} + \frac{15817454779052710567669642269}{22872718195707230947318561580641675} a^{17} - \frac{90745341348551838182014742944}{251599900152779540420504177387058425} a^{16} - \frac{9905965981707638483468417054779}{251599900152779540420504177387058425} a^{15} - \frac{13646570384252026889027639645392}{251599900152779540420504177387058425} a^{14} - \frac{3641853871697058520754976102641}{251599900152779540420504177387058425} a^{13} - \frac{11425309252363371573037727545097}{251599900152779540420504177387058425} a^{12} + \frac{12218876475330135367833996101076}{22872718195707230947318561580641675} a^{11} - \frac{180885098476655837419008279948439}{251599900152779540420504177387058425} a^{10} - \frac{422171422658863748567040733003202}{251599900152779540420504177387058425} a^{9} + \frac{361330657501502633637589332663353}{251599900152779540420504177387058425} a^{8} - \frac{6568478722571799646363290750331834}{251599900152779540420504177387058425} a^{7} - \frac{1774901550409148219477391284091872}{50319980030555908084100835477411685} a^{6} + \frac{264615581531421398884707874544864}{50319980030555908084100835477411685} a^{5} - \frac{213669992298903922777298740970767}{251599900152779540420504177387058425} a^{4} - \frac{51786067735988736773486998139390658}{251599900152779540420504177387058425} a^{3} + \frac{85494293168239390007681795758779559}{251599900152779540420504177387058425} a^{2} + \frac{75578182842356989438966934825419244}{251599900152779540420504177387058425} a - \frac{93890244680629565757261816920769321}{251599900152779540420504177387058425}$
Class group and class number
Not computed
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{22}) \), \(\Q(\sqrt{110}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{22})\), 5.1.50000.1, 10.2.824581120000000000.2, 10.2.4122905600000000000.1, 10.2.12500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.5.2 | $x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 11.10.5.2 | $x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |