Normalized defining polynomial
\( x^{20} - 8 x^{19} + 20 x^{18} + 5 x^{17} - 139 x^{16} + 320 x^{15} - 74 x^{14} - 1080 x^{13} + 2051 x^{12} - 150 x^{11} - 4520 x^{10} + 5643 x^{9} + 946 x^{8} - 9460 x^{7} + 7095 x^{6} + 4345 x^{5} - 8140 x^{4} + 1375 x^{3} + 3025 x^{2} + 275 x + 275 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(169675210983039290802001953125=5^{15}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{10} a^{12} + \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{2} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{2} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{10} a^{13} + \frac{1}{10} a^{10} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} + \frac{3}{10} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{10} a^{4} - \frac{1}{2} a$, $\frac{1}{10} a^{14} + \frac{1}{10} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{3}{10} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{10} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{15} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{2}$, $\frac{1}{10} a^{16} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{2} a$, $\frac{1}{10} a^{17} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{290} a^{18} + \frac{9}{290} a^{17} - \frac{7}{145} a^{16} - \frac{1}{145} a^{15} + \frac{9}{290} a^{14} + \frac{3}{145} a^{13} - \frac{1}{145} a^{12} + \frac{11}{58} a^{11} - \frac{31}{145} a^{10} - \frac{17}{145} a^{9} - \frac{1}{2} a^{8} + \frac{14}{29} a^{7} + \frac{68}{145} a^{6} + \frac{51}{290} a^{5} - \frac{64}{145} a^{4} + \frac{17}{58} a^{3} - \frac{13}{29} a^{2} + \frac{9}{29} a + \frac{1}{29}$, $\frac{1}{1522667992970003793291084950} a^{19} + \frac{2266977321878303145296507}{1522667992970003793291084950} a^{18} + \frac{6773990291204042030905639}{152266799297000379329108495} a^{17} + \frac{371648909846281366813322}{152266799297000379329108495} a^{16} - \frac{74432480434649783146548359}{1522667992970003793291084950} a^{15} + \frac{5031632950997647515874102}{152266799297000379329108495} a^{14} - \frac{21833179443902556562042887}{761333996485001896645542475} a^{13} + \frac{5796575703779273149222423}{304533598594000758658216990} a^{12} + \frac{211896652244235516789051143}{761333996485001896645542475} a^{11} - \frac{5094983111935032768689669}{30453359859400075865821699} a^{10} + \frac{11130162058058357900779263}{304533598594000758658216990} a^{9} + \frac{294113891802637106805338274}{761333996485001896645542475} a^{8} + \frac{279775467408119164897674773}{761333996485001896645542475} a^{7} + \frac{50588424081369379389024501}{304533598594000758658216990} a^{6} + \frac{15997386538840018913567638}{152266799297000379329108495} a^{5} + \frac{4179558817624777932002997}{60906719718800151731643398} a^{4} + \frac{19366951186871819718576203}{152266799297000379329108495} a^{3} - \frac{14879272604886868037021350}{30453359859400075865821699} a^{2} + \frac{14145830017507402057408876}{30453359859400075865821699} a - \frac{10875117228237674576402557}{30453359859400075865821699}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3624334.381450157 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.15125.1, 5.1.1830125.1, 10.2.16746787578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $11$ | 11.10.9.8 | $x^{10} + 33$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.8 | $x^{10} + 33$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |