Normalized defining polynomial
\( x^{20} + 20 x^{18} + 120 x^{16} + 50 x^{14} - 1650 x^{12} - 3950 x^{10} + 2625 x^{8} + 16125 x^{6} + 14125 x^{4} + 2500 x^{2} + 125 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1674678757812500000000000000000000=2^{20}\cdot 5^{27}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{5} a^{8}$, $\frac{1}{5} a^{9}$, $\frac{1}{5} a^{10}$, $\frac{1}{5} a^{11}$, $\frac{1}{5} a^{12}$, $\frac{1}{5} a^{13}$, $\frac{1}{25} a^{14}$, $\frac{1}{25} a^{15}$, $\frac{1}{6325} a^{16} - \frac{14}{6325} a^{14} - \frac{119}{1265} a^{12} - \frac{98}{1265} a^{10} + \frac{3}{253} a^{8} + \frac{10}{253} a^{6} - \frac{13}{253} a^{4} + \frac{56}{253} a^{2} - \frac{24}{253}$, $\frac{1}{6325} a^{17} - \frac{14}{6325} a^{15} - \frac{119}{1265} a^{13} - \frac{98}{1265} a^{11} + \frac{3}{253} a^{9} + \frac{10}{253} a^{7} - \frac{13}{253} a^{5} + \frac{56}{253} a^{3} - \frac{24}{253} a$, $\frac{1}{83483675} a^{18} + \frac{6033}{83483675} a^{16} - \frac{1274606}{83483675} a^{14} + \frac{174943}{3339347} a^{12} + \frac{730599}{16696735} a^{10} - \frac{1436859}{16696735} a^{8} + \frac{419}{49841} a^{6} + \frac{331558}{3339347} a^{4} + \frac{689013}{3339347} a^{2} - \frac{170428}{3339347}$, $\frac{1}{83483675} a^{19} + \frac{6033}{83483675} a^{17} - \frac{1274606}{83483675} a^{15} + \frac{174943}{3339347} a^{13} + \frac{730599}{16696735} a^{11} - \frac{1436859}{16696735} a^{9} + \frac{419}{49841} a^{7} + \frac{331558}{3339347} a^{5} + \frac{689013}{3339347} a^{3} - \frac{170428}{3339347} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 671705048.729 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 25600 |
| The 88 conjugacy class representatives for t20n534 are not computed |
| Character table for t20n534 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.17872314453125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |