Normalized defining polynomial
\( x^{20} - 175 x^{16} - 8 x^{15} - 8280 x^{13} + 2390 x^{12} - 400 x^{11} - 140648 x^{10} + 70000 x^{9} - 10990 x^{8} + 440 x^{7} + 2253500 x^{6} + 5616 x^{5} + 3025 x^{4} + 29375000 x^{3} - 25437500 x^{2} + 3993000 x + 38901449 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16599951744640000000000000000000000=2^{28}\cdot 5^{22}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{1812} a^{17} - \frac{73}{1812} a^{16} - \frac{55}{604} a^{15} - \frac{15}{604} a^{14} - \frac{65}{604} a^{13} + \frac{451}{1812} a^{12} - \frac{55}{1812} a^{11} - \frac{41}{604} a^{10} - \frac{811}{1812} a^{9} + \frac{679}{1812} a^{8} - \frac{779}{1812} a^{7} + \frac{267}{604} a^{6} + \frac{63}{604} a^{5} + \frac{667}{1812} a^{4} - \frac{617}{1812} a^{3} - \frac{113}{1812} a^{2} + \frac{37}{453} a - \frac{13}{453}$, $\frac{1}{1812} a^{18} - \frac{29}{906} a^{16} + \frac{47}{604} a^{15} + \frac{12}{151} a^{14} + \frac{259}{1812} a^{13} + \frac{21}{151} a^{12} - \frac{61}{1812} a^{11} + \frac{44}{453} a^{10} - \frac{29}{604} a^{9} - \frac{34}{453} a^{8} - \frac{347}{1812} a^{7} + \frac{113}{302} a^{6} + \frac{421}{1812} a^{5} - \frac{425}{906} a^{4} + \frac{599}{1812} a^{3} + \frac{53}{1812} a^{2} - \frac{191}{604} a - \frac{43}{453}$, $\frac{1}{60585827856464805668903647869051526727612657475684451896890453577551964} a^{19} + \frac{1555782319726413593067778350865089443900162742487454414283362927699}{10097637976077467611483941311508587787935442912614075316148408929591994} a^{18} - \frac{4100776436416737502403656298782318978979799184723249515432933877361}{30292913928232402834451823934525763363806328737842225948445226788775982} a^{17} + \frac{48169039275766375081775222913908862541191229346462834041026396271339}{5048818988038733805741970655754293893967721456307037658074204464795997} a^{16} - \frac{995136572557658595166781330447636262967211572820418025156985919313997}{10097637976077467611483941311508587787935442912614075316148408929591994} a^{15} + \frac{993051738499713850141008938018600420095957033073239872565369935388078}{15146456964116201417225911967262881681903164368921112974222613394387991} a^{14} + \frac{820199625619014082693264394673229695305193826859732428615955340166739}{5048818988038733805741970655754293893967721456307037658074204464795997} a^{13} + \frac{6585404314727143727972496175380123038354982484626418404100042974328141}{30292913928232402834451823934525763363806328737842225948445226788775982} a^{12} - \frac{1032079429338616321180091379731918781946037056042724762425651307997934}{15146456964116201417225911967262881681903164368921112974222613394387991} a^{11} - \frac{405280477563574837596767160027813041640675831740834761097137780178963}{10097637976077467611483941311508587787935442912614075316148408929591994} a^{10} - \frac{3969233840350370625498095191503873859571056091071054008224520237954988}{15146456964116201417225911967262881681903164368921112974222613394387991} a^{9} - \frac{2716045749741305523282125996385897762114571500632346483957561216673067}{15146456964116201417225911967262881681903164368921112974222613394387991} a^{8} - \frac{339441471664595701902345194920138671895785278651100201153050650358927}{5048818988038733805741970655754293893967721456307037658074204464795997} a^{7} + \frac{2244067008086807740539744943661633660361256010935451045890548729046684}{15146456964116201417225911967262881681903164368921112974222613394387991} a^{6} - \frac{3760018846254293862756408027737004948098238393303982533389332035265949}{30292913928232402834451823934525763363806328737842225948445226788775982} a^{5} - \frac{6070738467869437226411291657358639264275305170040248598147083406348775}{30292913928232402834451823934525763363806328737842225948445226788775982} a^{4} + \frac{20218444646669913914425062171545112932580703381701830463519174136722185}{60585827856464805668903647869051526727612657475684451896890453577551964} a^{3} - \frac{416810590131825625730529006740655156951789202705660503565038728062110}{5048818988038733805741970655754293893967721456307037658074204464795997} a^{2} + \frac{3794501527070394339687188027429499167540454420722575169403106048753967}{15146456964116201417225911967262881681903164368921112974222613394387991} a - \frac{145770325700060392994843970635655419950982493703944568946073785719007}{5048818988038733805741970655754293893967721456307037658074204464795997}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3363644183.928467 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{55}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{11})\), 5.1.50000.1, 10.2.25768160000000000.1, 10.2.128840800000000000.1, 10.2.12500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |
| $11$ | 11.10.5.1 | $x^{10} - 242 x^{6} - 1331 x^{4} - 131769 x^{2} - 4026275$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 11.10.5.1 | $x^{10} - 242 x^{6} - 1331 x^{4} - 131769 x^{2} - 4026275$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |