Normalized defining polynomial
\( x^{20} - 10 x^{19} + 45 x^{18} - 120 x^{17} + 215 x^{16} - 292 x^{15} + 350 x^{14} - 400 x^{13} + 385 x^{12} - 230 x^{11} + 11 x^{10} + 60 x^{9} + 55 x^{8} - 140 x^{7} + 90 x^{6} - 20 x^{5} + 25 x^{4} - 50 x^{3} - 75 x^{2} + 100 x - 25 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(163840000000000000000000000=2^{36}\cdot 5^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{1}{5} a^{5}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{6}$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{10} + \frac{2}{5} a^{7} - \frac{1}{2} a^{6} - \frac{2}{5} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{13} - \frac{1}{10} a^{11} + \frac{2}{5} a^{8} - \frac{1}{2} a^{7} - \frac{2}{5} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{10} a^{14} - \frac{1}{10} a^{10} + \frac{2}{5} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{2}{5} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{10} a^{15} - \frac{1}{10} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{2}{5} a^{6} - \frac{1}{10} a^{5} - \frac{1}{2} a$, $\frac{1}{10} a^{16} - \frac{1}{2} a^{8} + \frac{2}{5} a^{6} - \frac{1}{2}$, $\frac{1}{10} a^{17} - \frac{1}{2} a^{9} + \frac{2}{5} a^{7} - \frac{1}{2} a$, $\frac{1}{61850} a^{18} - \frac{9}{61850} a^{17} - \frac{442}{30925} a^{16} + \frac{1091}{61850} a^{15} - \frac{917}{30925} a^{14} + \frac{2309}{61850} a^{13} + \frac{717}{30925} a^{12} + \frac{2197}{30925} a^{11} - \frac{3281}{61850} a^{10} + \frac{2592}{30925} a^{9} - \frac{15}{1237} a^{8} - \frac{1989}{6185} a^{7} - \frac{80}{1237} a^{6} - \frac{765}{2474} a^{5} - \frac{674}{6185} a^{4} + \frac{1161}{2474} a^{3} + \frac{557}{2474} a^{2} + \frac{1203}{2474} a + \frac{439}{1237}$, $\frac{1}{78611350} a^{19} + \frac{313}{39305675} a^{18} + \frac{2838501}{78611350} a^{17} - \frac{1154009}{78611350} a^{16} + \frac{1705291}{78611350} a^{15} - \frac{2807491}{78611350} a^{14} - \frac{1823673}{39305675} a^{13} - \frac{1206273}{39305675} a^{12} + \frac{3808697}{39305675} a^{11} - \frac{5480001}{78611350} a^{10} - \frac{765937}{1572227} a^{9} + \frac{3835803}{7861135} a^{8} + \frac{3946391}{15722270} a^{7} + \frac{936715}{3144454} a^{6} - \frac{6455421}{15722270} a^{5} - \frac{1038409}{3144454} a^{4} - \frac{639}{2474} a^{3} - \frac{395282}{1572227} a^{2} - \frac{202091}{1572227} a - \frac{214798}{1572227}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 331332.875442 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 120 |
| The 7 conjugacy class representatives for $S_5$ |
| Character table for $S_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.2.12800000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.800000.1 |
| Degree 6 sibling: | 6.2.3200000.1 |
| Degree 10 siblings: | 10.2.12800000000000.1, 10.2.3200000000000.2 |
| Degree 12 sibling: | 12.4.256000000000000.1 |
| Degree 15 sibling: | Deg 15 |
| Degree 20 siblings: | Deg 20, Deg 20 |
| Degree 24 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.8 | $x^{8} + 8 x^{5} + 12$ | $4$ | $2$ | $16$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ |
| 2.12.20.37 | $x^{12} - 6 x^{10} - x^{8} + 4 x^{6} + 3 x^{4} + 2 x^{2} - 7$ | $6$ | $2$ | $20$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| $5$ | 5.10.11.1 | $x^{10} + 20 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.1 | $x^{10} + 20 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |