Normalized defining polynomial
\( x^{20} - x^{19} + 124 x^{18} - 173 x^{17} + 4721 x^{16} - 10397 x^{15} + 58765 x^{14} - 215931 x^{13} - 889345 x^{12} + 364678 x^{11} - 45537012 x^{10} + 71053240 x^{9} - 748475745 x^{8} + 1311602064 x^{7} - 4298401557 x^{6} + 10516055144 x^{5} - 3531065208 x^{4} - 16676950480 x^{3} + 26431197108 x^{2} - 22891892208 x + 11449628084 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(162227550009689191338250866824451128329832704=2^{8}\cdot 11^{12}\cdot 29^{6}\cdot 113^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $162.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 29, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{14} + \frac{1}{4} a^{12} + \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} + \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{15} - \frac{1}{8} a^{14} + \frac{1}{8} a^{13} + \frac{1}{4} a^{12} - \frac{1}{8} a^{11} + \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{3}{8} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{40} a^{18} + \frac{1}{20} a^{17} - \frac{1}{40} a^{16} - \frac{3}{40} a^{15} + \frac{3}{40} a^{14} - \frac{13}{40} a^{12} - \frac{1}{8} a^{11} - \frac{7}{40} a^{10} - \frac{3}{40} a^{9} + \frac{1}{40} a^{8} + \frac{11}{40} a^{7} - \frac{9}{20} a^{6} - \frac{3}{20} a^{5} + \frac{9}{20} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{59635568559363206367425167700362607795466461227699430832880723251972144702920835828931759031585807600} a^{19} + \frac{2291330356247786749062508520878344959045970208012553248947907521126968478162924964949624536047958}{3727223034960200397964072981272662987216653826731214427055045203248259043932552239308234939474112975} a^{18} - \frac{177622898450128362014898269897590177336631110560907578945918495036773031953903511875838752514561941}{14908892139840801591856291925090651948866615306924857708220180812993036175730208957232939757896451900} a^{17} + \frac{6001979738784928668530626478009214962183162069609562747936033639342847938217712248241606319489845771}{59635568559363206367425167700362607795466461227699430832880723251972144702920835828931759031585807600} a^{16} + \frac{126206695808343343401633996416310770995905911110451055347109330684739818062735034055343424999073457}{1490889213984080159185629192509065194886661530692485770822018081299303617573020895723293975789645190} a^{15} - \frac{4691712104921081185434585459814862410761612380805264875666842425415619766344069518888796233106775677}{59635568559363206367425167700362607795466461227699430832880723251972144702920835828931759031585807600} a^{14} - \frac{1568195551563865481049354107466635224450056028670695338345797313043641032815332268301008730210106371}{7454446069920400795928145962545325974433307653462428854110090406496518087865104478616469878948225950} a^{13} + \frac{18029093088832284308405663607971530845375688913528314287124893304661820690592684977935136322138819897}{59635568559363206367425167700362607795466461227699430832880723251972144702920835828931759031585807600} a^{12} + \frac{776020440134669415941939401785963610148115284575416197212322824297768597244864698148338432034025021}{7454446069920400795928145962545325974433307653462428854110090406496518087865104478616469878948225950} a^{11} - \frac{581165769534628228084826252161539417004960003096317661186352825575417982833137061637498541642985729}{1192711371187264127348503354007252155909329224553988616657614465039442894058416716578635180631716152} a^{10} + \frac{11454889498431982932294466484901802085375088577072833279931569517713528164911465643107685550129762369}{29817784279681603183712583850181303897733230613849715416440361625986072351460417914465879515792903800} a^{9} + \frac{14016784660528882339883796179145457245370791852857801176656646074456015126217791295148291004683436371}{29817784279681603183712583850181303897733230613849715416440361625986072351460417914465879515792903800} a^{8} + \frac{20391886582847652465925894360454727148815394154911359936277802297526628741775539064685863740746336273}{59635568559363206367425167700362607795466461227699430832880723251972144702920835828931759031585807600} a^{7} + \frac{7816428148938971513347151523313639078049800303706119279855717100470728863674086431199902011196979781}{59635568559363206367425167700362607795466461227699430832880723251972144702920835828931759031585807600} a^{6} - \frac{1923500772802080409539790952198727593154186063829172910241147548875355999079329116763773748001754877}{14908892139840801591856291925090651948866615306924857708220180812993036175730208957232939757896451900} a^{5} + \frac{616493176044618522549001335197374094683248257533136301450232066353786219750365356015437623075465303}{14908892139840801591856291925090651948866615306924857708220180812993036175730208957232939757896451900} a^{4} + \frac{210376180621090014583095911015554414698149739775425718542609556359301524123091681229511152091929233}{745444606992040079592814596254532597443330765346242885411009040649651808786510447861646987894822595} a^{3} + \frac{823724233507397193133501682915552364801439743599520152396983484599586091131565500420512408374936}{745444606992040079592814596254532597443330765346242885411009040649651808786510447861646987894822595} a^{2} - \frac{1102708106104178370293507205579386639628321880344557903808834147937405221980764522610515254887647143}{14908892139840801591856291925090651948866615306924857708220180812993036175730208957232939757896451900} a + \frac{7230769117578109157018563253174183244080670809572703074770257225601612739901504101637475158631769851}{14908892139840801591856291925090651948866615306924857708220180812993036175730208957232939757896451900}$
Class group and class number
$C_{2}\times C_{2}\times C_{8}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6065971184250 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 90 conjugacy class representatives for t20n685 are not computed |
| Character table for t20n685 is not computed |
Intermediate fields
| 5.5.6180196.1, 10.10.1107649855354064.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $29$ | 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 29.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 29.6.3.1 | $x^{6} - 58 x^{4} + 841 x^{2} - 219501$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $113$ | 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.12.10.1 | $x^{12} + 130967 x^{6} + 12769000000$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ |